As availability of precision therapies expands, a well-validated circulating cell-free DNA (cfDNA)-based comprehensive genomic profiling assay has the potential to provide considerable value as a complement to tissue-based testing to ensure potentially life-extending therapies are administered to patients most likely to benefit. Additional data supporting the clinical validity of cfDNA-based testing is necessary to inform optimal use of these assays in the clinic. The FoundationOne ® Liquid CDx assay is a pan-cancer cfDNA-based comprehensive genomic profiling assay that was recently approved by FDA. Validation studies included >7,500 tests and >30,000 unique variants across >300 genes and >30 cancer types. Clinical validity results across multiple tumor types are presented. Additionally, results demonstrated a 95% limit of detection of 0.40% variant allele fraction for select substitutions and insertions/deletions, 0.37% variant allele fraction for select rearrangements, 21.7% tumor fraction for copy number amplifications, and 30.4% TF for copy number losses. The limit of detection for microsatellite instability and blood tumor mutational burden were also determined. The false positive variant rate was 0.013% (approximately 1 in 8,000). Reproducibility of variant calling was 99.59%. In comparison with an orthogonal method, an overall positive percent agreement of 96.3% and negative percent agreement of >99.9% was observed. These study results demonstrate that FoundationOne Liquid CDx accurately and reproducibly detects the major types of genomic alterations in addition to complex biomarkers such as microsatellite instability, blood tumor mutational burden, and tumor fraction. Critically, clinical validity data is presented across multiple cancer types.
BACKGROUND:The ability to identify low-level somatic DNA mutations and minority alleles within an excess wild-type sample is becoming essential for characterizing early and posttreatment tumor status in cancer patients. Over the past 2 decades, much research has focused on improving the selectivity of PCR-based technologies for enhancing the detection of minority (mutant) alleles in clinical samples. Routine application in clinical and diagnostic settings requires that these techniques be accurate and cost-effective and require little effort to optimize, perform, and analyze.CONTENT: Enrichment methods typically segregate by their ability to enrich for, and detect, either known or unknown mutations. Although there are several robust approaches for detecting known mutations within a high background of wild-type DNA, there are few techniques capable of enriching and detecting low-level unknown mutations. One promising development is COLD-PCR (coamplification at lower denaturation temperature), which enables enrichment of PCR amplicons containing unknown mutations at any position, such that they can be subsequently sequenced to identify the exact nucleotide change.
HighlightsDigital PCR offers very high assay sensitivity and limit of detection.An approach for calculating limit of detection is demonstrated for two EGFR assays.Assay LoDs have been evaluated for eighteen cancer targets.
Identifying low-abundance mutations within wild-type DNA is important in several fields of medicine, including cancer, prenatal diagnosis and infectious diseases. However, utilizing the clinical and diagnostic potential of rare mutations is limited by sensitivity of the molecular techniques employed, especially when the type and position of mutations are unknown. We have developed a novel platform that incorporates a synthetic reference sequence within a polymerase chain reaction (PCR) reaction, designed to enhance amplification of unknown mutant sequences during COLD-PCR (CO-amplification at Lower Denaturation temperature). This new platform enables an Improved and Complete Enrichment (ice-COLD-PCR) for all mutation types and eliminates shortcomings of previous formats of COLD-PCR. We evaluated ice-COLD-PCR enrichment in regions of TP53 in serially diluted mutant and wild-type DNA mixtures. Conventional-PCR, COLD-PCR and ice-COLD-PCR amplicons were run in parallel and sequenced to determine final mutation abundance for a range of mutations representing all possible single base changes. Amplification by ice-COLD-PCR enriched all mutation types and allowed identification of mutation abundances down to 1%, and 0.1% by Sanger sequencing or pyrosequencing, respectively, surpassing the capabilities of other forms of PCR. Ice-COLD-PCR will help elucidate the clinical significance of low-abundance mutations and our understanding of cancer origin, evolution, recurrence-risk and treatment diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.