Wildlife collisions with human-built structures are a major source of direct anthropogenic mortality. Understanding and mitigating the impact of anthropogenic collisions on wildlife populations require unbiased mortality estimates. However, counts of collision fatalities are underestimated due to several bias sources, including scavenger removal of carcasses between fatality surveys and imperfect detection of carcasses present during surveys. These biases remain particularly understudied for bird-window collisions, the largest source of avian collision mortality. In Stillwater, Oklahoma, USA, we used bird carcasses collected during window collision monitoring to experimentally assess factors influencing scavenging and observer detection, and we employed trail cameras to characterize the scavenger community and timing of scavenging. We recorded nine scavenger species, but the domestic cat and Virginia opossum were responsible for 73% of known-species scavenging events. The most frequent scavenger species were primarily nocturnal, and 68% of scavenging events occurred at night. Scavenger species best predicted time to first scavenging event, season best predicted carcass persistence time, and both season and carcass size predicted whether any carcass remains persisted after scavenging. Our results also suggest that observer detection was influenced by substrate, with greater detection of carcasses on artificial substrates. Our findings related to scavenging timing have important implications for the unbiased estimation of collision mortality because the timing of peak scavenging relative to timing of peak mortality can substantially influence accuracy of adjusted mortality estimates. Further, the differences in correlates for time to first scavenging and time to carcass removal (i.e., persistence time) illustrate the importance of explicitly measuring these often-independent events that are frequently conflated in the anthropogenic mortality literature.
Wildlife residing in urban landscapes face many human-related threats to their survival. For birds, collision with glass on manmade structures has been identified as a major hazard, causing hundreds of millions of avian fatalities in North America every year. Although research has investigated factors associated with bird-glass collision mortality at buildings, no prior studies have focused on bird fatalities at glass-walled bus shelters. Our objectives in this study were to describe the magnitude of bird-bus shelter collisions in the city of Stillwater, Oklahoma and assess potential predictors of collision risk, including characteristics of shelters (glass area) and surrounding land cover (e.g., vegetative features). We surveyed for bird carcasses and indirect collision evidence at 18 bus shelters over a five-month period. Linear regression and model selection results revealed that the amount of glass on shelters and the area of lawn within 50 m of shelters were both positively related to fatal bird collisions; glass area was also positively associated with observations of collision evidence on glass surfaces. After accounting for scavenger removal of carcasses, we estimate that a minimum of 34 birds are killed each year between May and September by collision with the 36 bus shelters in the city of Stillwater. While our study provides an initial look at bird fatalities at bus shelters, additional research is needed to generate a large-scale estimate of collision mortality and to assess species composition of fatalities at a national scale. Designing new bus shelters to include less glass and retrofitting existing shelters to increase visibility of glass to birds will likely reduce fatal bird collisions at bus shelters and thus reduce the cumulative magnitude of anthropogenic impacts to birds in cities.
Urbanization increasingly exposes birds to multiple sources of direct anthropogenic mortality. Collisions with buildings, and windows in particular, are a top bird mortality source, annually causing 365–988 million fatalities in the United States. Correlates of window collision rates have been studied at the scale of entire buildings and in relation to the surrounding landscape, and most studies have only assessed correlates for all birds combined without considering season- and species-specific risk factors. In Stillwater, Oklahoma, USA, we conducted bird collision surveys at 16 buildings to assess building structural-, vegetation-, and land cover-related collision correlates. Unlike past studies, we focused at the scale of individual building façades, and in addition to considering correlates for total collisions, we assessed correlates for different seasons and separately for 8 collision-prone species. Several façade-related features, including proportional glass coverage, façade length, and façade height, were positively associated with total collisions and collisions for most separate seasons and species. Total collisions were also greater at alcove-shaped façades than flat, curved, and portico-shaped façades. We found that collision correlates varied among seasons (e.g., surrounding lawn cover important in summer and fall, but not spring) and among species (e.g., surrounding impervious cover positively and negatively related to collisions of Painted Bunting [Passerina ciris] and American Robin [Turdus migratorius], respectively). Given the importance of glass proportion, collision reduction efforts should continue to focus on minimizing and/or treating glass surfaces on new and existing buildings. Our species- and season-specific assessments indicate that management of some collision risk factors may not be equally effective for all seasons and species. Future research, policy, and management that integrates information about collision risk for all bird species and seasons, and at multiple scales from building façades to the surrounding landscape, will be most effective at reducing total mortality from bird–window collisions.
Collisions with buildings cause up to 1 billion bird fatalities annually in the United States and Canada. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites with standardized methods and consideration of species‐ and life‐history‐related variation and correlates of collisions. We addressed these research needs through coordinated collection of data on bird collisions with buildings at sites in the United States (35), Canada (3), and Mexico (2). We collected all carcasses and identified species. After removing records for unidentified carcasses, species lacking distribution‐wide population estimates, and species with distributions overlapping fewer than 10 sites, we retained 269 carcasses of 64 species for analysis. We estimated collision vulnerability for 40 bird species with ≥2 fatalities based on their North American population abundance, distribution overlap in study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified previously (e.g., Black‐throated Blue Warbler [Setophaga caerulescens]), whereas others emerged for the first time (e.g., White‐breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Building size and glass area were positively associated with number of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson's Thrush [Catharus ustulatus]). Life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland‐inhabiting species. Our results provide new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions and into species‐ and life‐history‐related variation and correlates of building collisions, information that can help refine collision management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.