Collisions with buildings cause up to 1 billion bird fatalities annually in the United States and Canada. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites with standardized methods and consideration of species‐ and life‐history‐related variation and correlates of collisions. We addressed these research needs through coordinated collection of data on bird collisions with buildings at sites in the United States (35), Canada (3), and Mexico (2). We collected all carcasses and identified species. After removing records for unidentified carcasses, species lacking distribution‐wide population estimates, and species with distributions overlapping fewer than 10 sites, we retained 269 carcasses of 64 species for analysis. We estimated collision vulnerability for 40 bird species with ≥2 fatalities based on their North American population abundance, distribution overlap in study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified previously (e.g., Black‐throated Blue Warbler [Setophaga caerulescens]), whereas others emerged for the first time (e.g., White‐breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Building size and glass area were positively associated with number of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson's Thrush [Catharus ustulatus]). Life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland‐inhabiting species. Our results provide new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions and into species‐ and life‐history‐related variation and correlates of building collisions, information that can help refine collision management.
Human structures and activities are increasingly encroaching into the aerosphere, the aerial habitat used by volant animals (Lambertucci et al., 2015). Collisions with human-built structures (e.g. buildings, communication towers, energy infrastructure) are primary hazards, causing up to 1.5 billion avian fatalities annually in the United States (Loss et al., 2015). Collisions with buildings, especially their windows, cause up to 1 billion of these annual fatalities and primarily affect migratory native bird species during migration periods (Elmore, Hager, et al., 2020;Loss et al., 2014). Nocturnally migrating birds comprise the majority of these casualties and are the most frequent collision victims at buildings and many other structures (e.g. communication towers), partly due to attraction and disorientation caused by artificial light
Background Small unoccupied aircraft systems (UAS) are replacing or supplementing occupied aircraft and ground-based surveys in animal monitoring due to improved sensors, efficiency, costs, and logistical benefits. Numerous UAS and sensors are available and have been used in various methods. However, justification for selection or methods used are not typically offered in published literature. Furthermore, existing reviews do not adequately cover past and current UAS applications for animal monitoring, nor their associated UAS/sensor characteristics and environmental considerations. We present a systematic map that collects and consolidates evidence pertaining to UAS monitoring of animals. Methods We investigated the current state of knowledge on UAS applications in terrestrial animal monitoring by using an accurate, comprehensive, and repeatable systematic map approach. We searched relevant peer-reviewed and grey literature, as well as dissertations and theses, using online publication databases, Google Scholar, and by request through a professional network of collaborators and publicly available websites. We used a tiered approach to article exclusion with eligible studies being those that monitor (i.e., identify, count, estimate, etc.) terrestrial vertebrate animals. Extracted metadata concerning UAS, sensors, animals, methodology, and results were recorded in Microsoft Access. We queried and catalogued evidence in the final database to produce tables, figures, and geographic maps to accompany this full narrative review, answering our primary and secondary questions. Review findings We found 5539 articles from our literature searches of which 216 were included with extracted metadata categories in our database and narrative review. Studies exhibited exponential growth over time but have levelled off between 2019 and 2021 and were primarily conducted in North America, Australia, and Antarctica. Each metadata category had major clusters and gaps, which are described in the narrative review. Conclusions Our systematic map provides a useful synthesis of current applications of UAS-animal related studies and identifies major knowledge clusters (well-represented subtopics that are amenable to full synthesis by a systematic review) and gaps (unreported or underrepresented topics that warrant additional primary research) that guide future research directions and UAS applications. The literature for the use of UAS to conduct animal surveys has expanded intensely since its inception in 2006 but is still in its infancy. Since 2015, technological improvements and subsequent cost reductions facilitated widespread research, often to validate UAS technology to survey single species with application of descriptive statistics over limited spatial and temporal scales. Studies since the 2015 expansion have still generally focused on large birds or mammals in open landscapes of 4 countries, but regulations, such as maximum altitude and line-of-sight limitations, remain barriers to improved animal surveys with UAS. Critical knowledge gaps include the lack of (1) best practices for using UAS to conduct standardized surveys in general, (2) best practices to survey whole wildlife communities in delineated areas, and (3) data on factors affecting bias in counting animals from UAS images. Promising advances include the use of thermal sensors in forested environments or nocturnal surveys and the development of automated or semi-automated machine-learning algorithms to accurately detect, identify, and count animals from UAS images.
In recent years, small unmanned aircraft systems (sUAS) have been used widely to monitor animals because of their customizability, ease of operating, ability to access difficult to navigate places, and potential to minimize disturbance to animals. Automatic identification and classification of animals through images acquired using a sUAS may solve critical problems such as monitoring large areas with high vehicle traffic for animals to prevent collisions, such as animal-aircraft collisions on airports. In this research we demonstrate automated identification of four animal species using deep learning animal classification models trained on sUAS collected images. We used a sUAS mounted with visible spectrum cameras to capture 1288 images of four different animal species: cattle (Bos taurus), horses (Equus caballus), Canada Geese (Branta canadensis), and white-tailed deer (Odocoileus virginianus). We chose these animals because they were readily accessible and white-tailed deer and Canada Geese are considered aviation hazards, as well as being easily identifiable within aerial imagery. A four-class classification problem involving these species was developed from the acquired data using deep learning neural networks. We studied the performance of two deep neural network models, convolutional neural networks (CNN) and deep residual networks (ResNet). Results indicate that the ResNet model with 18 layers, ResNet 18, may be an effective algorithm at classifying between animals while using a relatively small number of training samples. The best ResNet architecture produced a 99.18% overall accuracy (OA) in animal identification and a Kappa statistic of 0.98. The highest OA and Kappa produced by CNN were 84.55% and 0.79 respectively. These findings suggest that ResNet is effective at distinguishing among the four species tested and shows promise for classifying larger datasets of more diverse animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.