SummaryThe spliceosome is a highly dynamic machine requiring multiple RNA-dependent ATPases of the DExD/H-box family. A fundamental unanswered question is how their activities are regulated. Brr2 function is necessary for unwinding the U4/U6 duplex, a step essential for catalytic activation of the spliceosome. Here we show that Brr2-dependent dissociation of U4/U6 snRNAs in vitro is activated by a fragment from the C-terminus of the U5 snRNP protein Prp8. In contrast to its helicase-stimulating activity, this fragment inhibits Brr2 U4/U6-dependent ATPase activity. Notably, U4/U6 unwinding activity is not stimulated by fragments carrying alleles of prp8 that in humans confers an autosomal dominant form of retinitis pigmentosa. Because Brr2 activity must be restricted to prevent premature catalytic activation, our results have important implications for fidelity maintenance in the spliceosome.
Brr2 is a DExD/H-box helicase responsible for U4/U6 unwinding during spliceosomal activation. Brr2 contains two helicase-like domains, each of which is followed by a Sec63 domain with unknown function. We determined the crystal structure of the second Sec63 domain, which unexpectedly resembles domains 4 and 5 of DNA helicase Hel308. This, together with sequence similarities between Brr2’s helicase-like domains and domains 1–3 of Hel308, led us to hypothesize that Brr2 contains two consecutive Hel308-like modules (Hel308-I and II). Our structural model and mutagenesis data suggest that Brr2 shares a similar helicase mechanism with Hel308. We demonstrate that Hel308-II interacts with Prp8 and Snu114 in vitro and in vivo. We further find that the C-terminal region of Prp8 (Prp8-CTR) facilitates the binding of the Brr2/Prp8-CTR complex to U4/U6. Our results have important implications for the mechanism and regulation of Brr2’s activity.
The spliceosome is a complex small nuclear (sn)RNA-protein machine that removes introns from pre-mRNAs via two successive phosphoryl transfer reactions. The chemical steps are isoenergetic, yet splicing requires at least eight RNA-dependent ATPases responsible for substantial conformational rearrangements. To comprehensively monitor pre-mRNA conformational dynamics, we developed a strategy for single molecule FRET (smFRET) that utilizes a small, efficiently spliced yeast pre-mRNA, Ubc4, in which donor and acceptor fluorophores are placed in the exons adjacent to the 5′ and 3′ splice sites. During splicing in vitro we observe a multitude of generally reversible, time-and ATP-dependent conformational transitions of individual pre-mRNAs. The conformational dynamics of branchpoint and 3′ splice site mutants differ from one another and from wild-type. Because all transitions are reversible, spliceosome assembly appears to be occurring close to thermal equilibrium.
The spliceosome is a dynamic macromolecular machine that undergoes a series of conformational rearrangements as it transitions between the several states required for accurate splicing. The transition from the B to B is a key part of spliceosome assembly and is defined by the departure of several proteins, including essential U5 component Dib1. Recent structural studies suggest that Dib1 has a role in preventing premature spliceosome activation, as it is positioned adjacent to the U6 snRNA ACAGAGA and the U5 loop I, but its mechanism is unknown. Our data indicate that Dib1 is a robust protein that tolerates incorporation of many mutations, even at positions thought to be key for its folding stability. However, we have identified two temperature-sensitive mutants that stall in vitro splicing prior to the first catalytic step and block assembly at the B complex. In addition, Dib1 readily exchanges in splicing extracts despite being a central component of the U5 snRNP, suggesting that the binding site of Dib1 is flexible. Structural analyses show that the overall conformation of Dib1 and the mutants are not affected by temperature, so the temperature sensitive defects most likely result from altered interactions between Dib1 and other spliceosomal components. Together, these data lead to a new understanding of Dib1's role in the B to B transition and provide a model for how dynamic protein-RNA interactions contribute to the correct assembly of a complex molecular machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.