Proper neuronal function and several forms of synaptic plasticity are highly dependent on precise control of mRNA translation, particularly in dendrites. We find that eIF4AIII, a core exon junction complex (EJC) component loaded onto mRNAs by pre-mRNA splicing, is associated with neuronal mRNA granules and dendritic mRNAs. eIF4AIII knockdown markedly increases both synaptic strength and GLUR1 AMPA receptor abundance at synapses. eIF4AIII depletion also increases ARC, a protein required for maintenance of long-term potentiation; arc mRNA, one of the most abundant in dendrites, is a natural target for nonsense-mediated decay (NMD). Numerous new NMD candidates, some with potential to affect synaptic activity, were also identified computationally. Two models are presented for how translation-dependent decay pathways such as NMD might advantageously function as critical brakes for protein synthesis in cells such as neurons that are highly dependent on spatially and temporally restricted protein expression.
An external stem, essential for the release of small nucleolar RNAs (snoRNAs) from their pre-mRNAs, flanks the majority of yeast intron-encoded snoRNAs. Even if this stem is not a canonical Rnt1p substrate, several experiments have indicated that the Rnt1p endonuclease is required for snoRNA processing. To identify the factors necessary for processing of intron-encoded snoRNAs, we have raised in vitro extracts able to reproduce such activity. We found that snoRNP factors are associated with the snoRNA- coding region throughout all the processing steps, and that mutants unable to assemble snoRNPs have a processing-deficient phenotype. Specific depletion of Nop1p completely prevents U18 snoRNA synthesis, but does not affect processing of a dicistronic snoRNA-coding unit that has a canonical Rnt1p site. Correct cleavage of intron-encoded U18 and snR38 snoRNAs can be reproduced in vitro by incubating together purified Nop1p and Rnt1p. Pull-down experiments showed that the two proteins interact physically. These data indicate that cleavage of U18, snR38 and possibly other intron-encoded snoRNAs is a regulated process, since the stem is cleaved by the Rnt1p endonuclease only when snoRNP assembly has occurred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.