Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice.
Background: The Lifestyle-integrated Functional Exercise (LiFE) programme is a fall prevention programme originally taught in a resource-intensive one-to-one format with limited feasibility for large-scale implementation. The aim of this paper is to present the conceptual framework and initial feasibility evaluation of a group-based LiFE (gLiFE) format developed for large-scale implementation. Methods: The conceptual gLiFE framework (part I) is based on three pillars, LiFE Activities and Principles, Theory of Behaviour Change and Behaviour Change Techniques, and Instruction. The feasibility of gLiFE was tested (part II) within a multimodal approach including quantitative questionnaires measuring safety, acceptability (1 = best to 7 = insufficient), and adherence to the LiFE activities (range = 0-14) as well as a focus group interview. Exploratory self-reported measures on behaviour change including self-determined motivation (range = 1-5), intention, planning, action control, and habit strength (range = 1-6) were assessed pre and post intervention. Data analyses were performed using descriptive statistics and qualitative content analysis. Results: The development process resulted in a manualised gLiFE concept containing standardised information on gLiFE's content and structure. Feasibility testing: Six older adults (median = 72.8 years, 5 female) completed the feasibility study and rated safety (median = 7.0, IQR = 0.3) and acceptability as high (median = 1, IQR = 1). Participants implemented 9.5 LiFE activities (IQR = 4.0) into their daily routines. No adverse events occurred during the study. In the focus group, the group format and LiFE activities were perceived as positive and important for maintaining strength and balance capacity. Self-determined motivation intention, planning, and habit strength were rated higher post intervention. Conclusion: The developed conceptual gLiFE framework represents the basis for a gLiFE format with potential for standardised large-scale implementation. Proof-of-concept could be demonstrated in a group of communitydwelling older adults at risk of falling. The public health potential of gLiFE in terms of (cost-)effectiveness is currently being evaluated in a large trial.
<b><i>Background:</i></b> The Lifestyle-integrated Functional Exercise (LiFE) program is an intervention integrating balance and strength activities into daily life, effective at reducing falls in at-risk people ≥70 years. There is potential for LiFE to be adapted to young seniors in order to prevent age-related functional decline. <b><i>Objective:</i></b> We aimed to (1) develop an intervention by adapting Lifestyle-integrated Functional Exercise (aLiFE) to be more challenging and suitable for preventing functional decline in young seniors in their 60s and (2) perform an initial feasibility evaluation of the program. Pre-post changes in balance, mobility, and physical activity (PA) were also explored. <b><i>Methods:</i></b> Based on a conceptual framework, a multidisciplinary expert group developed an initial aLiFE version, including activities for improving strength, neuromotor performances, and PA. Proof-of-concept was evaluated in a 4-week pre-post intervention study measuring (1) feasibility including adherence, frequency of practice, adverse events, acceptability (i.e., perceived helpfulness, adaptability, level of difficulty of single activities), and safety, and (2) changes in balance/mobility (Community Balance and Mobility Scale) and PA (1 week activity monitoring). The program was refined based on the study results. <b><i>Results:</i></b> To test the initial aLiFE version, 31 young seniors were enrolled and 30 completed the study (mean age 66.4 ± 2.7 years, 60% women). Of a maximum possible 16 activities, participants implemented on average 12.1 ± 1.8 activities during the intervention, corresponding to mean adherence of 76%. Implemented activities were practiced 3.6–6.1 days/week and 1.8–7.8 times/day, depending on the activity type. One noninjurious fall occurred during practice, although the participant continued the intervention. The majority found the activities helpful, adaptable to individual lifestyle, appropriately difficult, and safe. CMBS score increased with medium effect size (d = 0.72, <i>p</i> = 0.001). Increase in daily walking time (d = 0.36) and decrease in sedentary time (d = –0.10) were nonsignificant. Refinements included further increasing the task challenge of some strength activities and defining the most preferred activities in the trainer’s manual to facilitate uptake of the program. <b><i>Conclusion:</i></b> aLiFE has the potential to engage young seniors in regular lifestyle-integrated activities. Effectiveness needs to be evaluated in a randomized controlled trial.
BackgroundThe Lifestyle-Integrated Functional Exercise (LiFE) program is effective in improving strength, balance, and physical activity (PA) while simultaneously reducing falls in older people by incorporating exercise activities in recurring daily tasks. However, implementing the original LiFE program includes substantial resource requirements. Therefore, as part of the LiFE-is-LiFE project, a group format (gLiFE) of the LiFE program has been developed, which will be tested regarding its noninferiority to the individually delivered LiFE in terms of PA-adjusted fall incidence and overall cost-effectiveness.MethodsIn a multi-centre, single-blinded noninferiority trial, an envisaged sample of N = 300 participants (> 70 years; faller and/or confirmed falls risk; community-dwelling) will be randomized in either LiFE or gLiFE. Both groups will undergo the same strength and balance activities as well as PA promotion activities and habitualization strategies as described in the LiFE programme, however, based on different approaches of delivery: During the 6-month intervention phase, LiFE participants will receive seven home visits and two telephone calls; in gLiFE, the program will be delivered in seven group sessions and also two telephone calls. Main outcomes are a) fall incidence per PA and b) incremental cost-effectiveness ratio comparing costs and quality-adjusted life years between the two interventions. Secondary outcomes include PA behaviour, motor performance, health status, psychosocial status, program evaluation, and adherence. Measurements will be conducted at baseline, 6-month and 12-month follow-up; evaluation of intervention sessions and assessment of psychosocial variables related to execution and habitualization of LiFE activities will be made during the intervention period as well.DiscussionCompared to LiFE, we expect gLiFE to (a) reduce falls per PA by a similar rate; (b) be more cost-effective; (c) comparably enhance physical performance in terms of strength and balance as well as PA. By investigating the economic and societal benefit, this study will be of high practical relevance as noninferiority of gLiFE would facilitate large-scale implementation due to lower resource usage. This would result in better reach and increased accessibility, which is important for subjects with a history of falls and/or being at risk of falls.Trial registrationClinicalTrials.gov NCT03462654. Registered on March 12, 2018.
BackgroundWith the growing number of young-older adults (baby-boomers), there is an increasing demand for assessment tools specific for this population, which are able to detect subtle balance and mobility deficits. Various balance and mobility tests already exist, but suffer from ceiling effects in higher functioning older adults. A reliable and valid challenging balance and mobility test is critical to determine a young-older adult’s balance and mobility performance and to timely initiate preventive interventions. The aim was to evaluate the concurrent validity, inter- and intrarater reliability, internal consistency, and ceiling effects of a challenging balance and mobility scale, the Community Balance and Mobility Scale (CBM), in young-older adults aged 60 to 70 years.MethodsFifty-one participants aged 66.4 ± 2.7 years (range, 60–70 years) were assessed with the CBM. The Fullerton Advanced Balance scale (FAB), 3-Meter Tandem Walk (3MTW), 8-level balance scale, Timed-Up-and-Go (TUG), and 7-m habitual gait speed were used to estimate concurrent validity, examined by Spearman correlation coefficient (ρ). Inter- and intrarater reliability were calculated as Intra-class-correlations (ICC), and internal consistency by Cronbach alpha and item-total correlations (ρ). Ceiling effects were determined by obtaining the percentage of participants reaching the highest possible score.ResultsThe CBM significantly correlated with the FAB (ρ = 0.75; p < .001), 3MTW errors (ρ = − 0.61; p < .001), 3MTW time (ρ = − 0.35; p = .05), the 8-level balance scale (ρ = 0.35; p < .05), the TUG (ρ = − 0.42; p < .01), and 7-m habitual gait speed (ρ = 0.46, p < .001). Inter- (ICC2,k = 0.97), intrarater reliability (ICC3,k = 1.00) were excellent, and internal consistency (α = 0.88; ρ = 0.28–0.81) was good to satisfactory. The CBM did not show ceiling effects in contrast to other scales.ConclusionsConcurrent validity of the CBM was good when compared to the FAB and moderate to good when compared to other measures of balance and mobility. Based on this study, the CBM can be recommended to measure balance and mobility performance in the specific population of young-older adults.Trial registrationTrial number: ISRCTN37750605. (Registered on 21/04/2016).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.