The diagnostics of anaerobic glycolytic metabolism which play a subordinate role in elite rowing and parameters such as maximum lactate accumulation rate (νLa.max) have thus far not been associated with ergometer rowing performance. The aim of the study was to quantify the glycolytic energy metabolism (WGly) during a 2000 m ergometer rowing time trial (RTT) and νLa.max during a 10 s maximum ergometer rowing sprint test (RST) and to unravel associations between those variables and RTT performance. Combined post-exercise lactate measurements and oxygen uptake after RST and RTT were used to determine νLa.max and glycolytic energy contribution (WGly) in seven male and three female German U 23 national rowers (N = 10, 19.8 ± 0.9 years, 183.2 ± 7.0 cm height, 79.9 ± 13.3 kg body mass, 16.4 ± 5.1 % body fat). WGly during RTT ranged from 7 to 15.5% and νLa.max between 0.25 and 0.66 mmol∙L−1∙s−1. νLa.max correlated with WGly (p < 0.05, r = 0.74) and the mechanical power output (W) for the first 300 m (300first) during RTT (p < 0.05, r = 0.67). νLa.max further correlated with ∆300first−last (W) for the first and last 300 m (300last) during RTT (p < 0.01, r = 0.87) and also within the subgroup of male rowers. νLa.max displays a wide spectrum of individual differences in rowers. Due to this and its correlation to specific phases of RTT, it contributes to an individual energetic performance profile in rowing. Future studies must undermine the role of νLa.max for exercise performance and whether it serves as a marker that can be specifically targeted for a training-induced increase or decrease.
PURPOSE: A number of physiological diagnostics were developed. However, the timeline-related diagnostics of maximal anaerobic glycolytic capacity remain unclear. The objective of this study was to evaluate the reliability and validity of a sprint running test to assess the anaerobic capacity.METHODS: The study was divided into three parts. Sixty-one male (24±4 years, 181.0±4.3 cm; 78.5±5.9 kg) and twelve female (25±3 years, 167.0±0.6 cm, 60.4±5.7 kg) sports students participated in this study. Twenty-five subjects (13 males, 24±2 years, 181.0±0.5 cm, 78.5±5.9 kg; 12 females, 25±3 years, 167.0±0.6 cm, 60.4±5.7 kg) performed incremental step tests at running track and several linear sprints on a running track (LSRT) with different time durations (8, 10, 12, and 14 seconds)(part I) on different days. Twenty-five male subjects (24±3 years, 180.7±6.7 cm, 84.6±8.8 kg) conducted a 10 or 12 second sprint running on a non-motorized treadmill (NMT)(part II). In part III, twenty-three male subjects (24±2 years, 181.4±5.8 cm, 74.5±7.4 kg) ran a 10 second LSRT and NMT on consecutive days. Capillary blood samplings were taken before (Lac<sub>r</sub>) and after the sprint running for ten minutes at one minute intervals to find out maximal lactate concentration after exercise and to calculate the maximum lactate production rate (LPR<sub>max</sub>).RESULTS: For all parts reliability for LPR<sub>max</sub> was proven (Part I: 8 seconds: ICC: <i>r</i>=.89; 10 seconds: ICC: <i>r</i>=.82; 12 seconds: ICC: <i>r</i>=.92; 14 seconds: <i>r</i>=.84, respectively; Part II: 10 seconds: ICC: <i>r</i>=.76; 12 seconds: ICC: <i>r</i>=.79). To analyze validity for LPR<sub>max</sub>, Part III was conducted and proven valid (ICC: <i>r</i>=.96, p=.074).CONCLUSIONS: We demonstrate that LSRT and NMT reliably determine anaerobic capacity and can be used as a valid tool for physiological performance diagnostics.
PURPOSE: A number of physiological diagnostics were developed. However, the timeline-related diagnostics of maximal anaerobic glycolytic capacity remain unclear. The objective of this study was to evaluate the reliability and validity of a sprint running test to assess the anaerobic capacity.METHODS: The study was divided into three parts. Sixty-one male (24±4 years, 181.0±4.3 cm; 78.5±5.9 kg) and twelve female (25±3 years, 167.0±0.6 cm, 60.4±5.7 kg) sports students participated in this study. Twenty-five subjects (13 males, 24±2 years, 181.0±0.5 cm, 78.5±5.9 kg; 12 females, 25±3 years, 167.0±0.6 cm, 60.4±5.7 kg) performed incremental step tests at running track and several linear sprints on a running track (LSRT) with different time durations (8, 10, 12, and 14 seconds)(part I) on different days. Twenty-five male subjects (24±3 years, 180.7±6.7 cm, 84.6±8.8 kg) conducted a 10 or 12 second sprint running on a non-motorized treadmill (NMT)(part II). In part III, twenty-three male subjects (24±2 years, 181.4±5.8 cm, 74.5±7.4 kg) ran a 10 second LSRT and NMT on consecutive days. Capillary blood samplings were taken before (Lac<sub>r</sub>) and after the sprint running for ten minutes at one minute intervals to find out maximal lactate concentration after exercise and to calculate the maximum lactate production rate (LPR<sub>max</sub>).RESULTS: For all parts reliability for LPR<sub>max</sub> was proven (Part I: 8 seconds: ICC: <i>r</i>=.89; 10 seconds: ICC: <i>r</i>=.82; 12 seconds: ICC: <i>r</i>=.92; 14 seconds: <i>r</i>=.84, respectively; Part II: 10 seconds: ICC: <i>r</i>=.76; 12 seconds: ICC: <i>r</i>=.79). To analyze validity for LPR<sub>max</sub>, Part III was conducted and proven valid (ICC: <i>r</i>=.96, p=.074).CONCLUSIONS: We demonstrate that LSRT and NMT reliably determine anaerobic capacity and can be used as a valid tool for physiological performance diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.