We have developed a new strategy for antiviral peptide discovery by using lyssaviruses (rabies virus and rabies-related viruses) as models. Based on the mimicry of natural bioactive peptides, two genetically encoded combinatorial peptide libraries composed of intrinsically constrained peptides (coactamers) were designed. Proteomic knowledge concerning the functional network of interactions in the lyssavirus transcriptionreplication complex highlights the phosphoprotein (P) as a prime target for inhibitors of viral replication. We present an integrated, sequential drug discovery process for selection of peptides with antiviral activity directed against the P. Our approach combines (i) an exhaustive two-hybrid selection of peptides binding two phylogenetically divergent lyssavirus P's, (ii) a functional analysis of protein interaction inhibition in a viral reverse genetic assay, coupled with a physical analysis of viral nucleoprotein-P complex by protein chip mass spectrometry, and (iii) an assay for inhibition of lyssavirus infection in mammalian cells. The validity of this strategy was demonstrated by the identification of four peptides exhibiting an efficient antiviral activity. Our work highlights the importance of P as a target in anti-rabies virus drug discovery. Furthermore, the screening strategy and the coactamer libraries presented in this report could be considered, respectively, a general target validation strategy and a potential source of biologically active peptides which could also help to design pharmacologically active peptide-mimicking molecules. The strategy described here is easily applicable to other pathogens.Our laboratory recently underscored the crucial role played by the phosphoprotein (P) in the formation of the rabies virus transcription-replication complex by using yeast two-hybrid and viral reverse genetic approaches (12). As a constituent of the viral ribonucleoprotein (RNP) complex, the P interacts with two other viral components, the nucleoprotein (N), which tightly enwraps the viral RNA genome, and the RNA-dependent RNA polymerase (L). P also binds a cellular protein implicated in retrograde transport (Dynein LC8), strongly suggesting that interfering with P functions could have deleterious effects on the viral cycle (11, 18). Thus, the pivotal roles played by P make it a prime target for inhibitors of viral transcription and replication.A recent World Health Organization report estimated that between 40,000 to 70,000 deaths from rabies encephalomyelitis occur every year (World Health Organization Fact Sheet No. 99, 2001), primarily due to the absence of an optimal postexposure treatment protocol for human vaccination and serotherapy (22). Rabies virus immunoglobulins of human or equine origin are in short supply worldwide and completely unaffordable in many developing countries. It is therefore urgent to find alternative solutions to treat the initial phase of rabies virus exposure. Local treatment with a virucidal drug would solve this problem, and development of anti-rabies v...
We wanted to develop a therapeutic approach against rabies disease by targeting the lyssavirus transcription/replication complex. Because this complex (nucleoprotein N-RNA template processed by the L polymerase and its cofactor, the phosphoprotein P) is similar to that of other negative-strand RNA viruses, we aimed to design broad-spectrum antiviral drugs that could be used as a complement to postexposure vaccination and immunotherapy. Recent progress in understanding the structure/function of the rabies virus P, N, and L proteins predicts that the amino-terminal end of P is an excellent target for destabilizing the replication complex because it interacts with both L (for positioning onto the N-RNA template) and N (for keeping N soluble, as needed for viral RNA encapsidation). Thus, peptides mimicking various lengths of the aminoterminal end of P have been evaluated, as follows: (i) for binding properties to the N-P-L partners by the two-hybrid method; (ii) for their capacity to inhibit the transcription/replication of a rabies virus minigenome encoding luciferase in BHK-21-T7 cells; and (iii) for their capacity to inhibit rabies virus infection of BHK-21-T7 cells and of two derivatives of the neuronal SK-N-SH cell line. Peptides P60 and P57 (the first 60 and first 57 NH 2 residues of P, respectively) exhibited a rapid, strong, and long-lasting inhibitory potential on luciferase expression (>95% from 24 h to 55 h). P42 was less efficient in its inhibition level (75% for 18 to 30 h) and duration (40% after 48 h). The most promising peptides were synthesized in tandem with the Tat sequence, allowing cell penetration. Their inhibitory effects were observed on BHK-21-T7 cells infected with rabies virus and Lagos bat virus but not with vesicular stomatitis virus. In neuronal cells, a significant inhibition of both nucleocapsid inclusions and rabies virus release was observed.
The rabies virus glycoprotein molecule (G) can be divided into two parts separated by a flexible hinge: the NH2 half (site II part) containing antigenic site II up to the linear region (amino acids [aa] 253 to 275 encompassing epitope VI [aa 264]) and the COOH half (site III part) containing antigenic site III and the transmembrane and cytoplasmic domains. The structural and immunological roles of each part were investigated by cell transfection and mouse DNA-based immunization with homogeneous and chimeric G genes formed by fusion of the site II part of one genotype (GT) with the site III part of the same or another GT. Various site II-site III combinations between G genes of PV (Pasteur virus strain) rabies (GT1), Mokola (GT3), and EBL1 (European bat lyssavirus 1 [GT5]) viruses were tested. Plasmids pGPV-PV, pGMok-Mok, pGMok-PV, and pGEBL1-PV induced transient expression of correctly transported and folded antigens in neuroblastoma cells and virus-neutralizing antibodies against parental viruses in mice, whereas, pG-PVIII (site III part only) and pGPV-Mok did not. The site III part of PV (GT1) was a strong inducer of T helper cells and was very effective at presenting the site II part of various GTs. Both parts are required for correct folding and transport of chimeric G proteins which have a strong potential value for immunological studies and development of multivalent vaccines. Chimeric plasmid pGEBL1-PV broadens the spectrum of protection against European lyssavirus genotypes (GT1, GT5, and GT6).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.