Vegetation is a major driver of fluvial dynamics in modern rivers, but few facies models incorporate its influence. This article partially fills that gap by documenting the stratigraphy, architecture and palaeobotany of the Lower Pennsylvanian Boss Point Formation of Atlantic Canada, which contains some of the Earth's earliest accumulations of large woody debris. Braided-fluvial systems occupied channel belts of varied scale within valleys several tens of metres deep and more than 12 km wide, and their deposits predominantly consist of sandy and gravelly bedforms with subordinate accretionary macroforms, high flow-strength sand sheets and rippled abandonment facies. Discrete accumulations of clastic detritus and woody debris are up to 6 m thick and constitute at least 18% of the in-channel deposits; they represent lags at the base of large and small channels, fills of minor channels and sandy macroforms that developed in central positions in the upper parts of channel fills. Sandstones with roots and other remnants of in situ vegetation demonstrate that vegetated islands were present, and the abundance of discrete channel fills suggests that the formation represents an anabranching, island-braided sandbed river, the earliest example documented to date. Although some sphenopsid and lycopsid remains are present, most woody fragments are derived from cordaitalean trees, and the evolution of this group late in the Mississippian is inferred to have exerted a significant influence on fluvial morphodynamic patterns. The formation records a landscape in which active channel belts alternated with well-drained floodplains colonized by dense, mature forests and local patches of pioneering, disturbance-tolerant vegetation. Lakes and poorly drained floodplains dominated by carbonate and organic deposition, respectively, were also present. A large supply of woody debris triggered channel blockage and avulsion, and active channel margins and islands within the channel belts were initially colonized by pioneer vegetation and subsequently stabilized by large trees. A similar alternation of stable and unstable conditions is observed in modern braided rivers actively influenced by vegetation.
The 1125-m-thick type section of the Pennsylvanian Boss Point Formation is well exposed along the shore of the Bay of Fundy in Nova Scotia. We provide the first comprehensive account of the entirety of this formation, which comprises nearly one-third of the stratigraphic thickness of the Joggins Fossil Cliffs UNESCO World Heritage Site. The basal Chignecto Bay Member (0-91.5 m) is composed of redbeds, single-storey channel bodies with northerly paleoflow, and thin palustrine limestones. The middle Ward Point Member (91.5-951.7 m) contains up to 16 megacycles composed of alternations between thick packages of braided fluvial sandstone and fine-grained deposits. Although regional studies of the Boss Point Formation suggest that the fine-grained deposits are largely composed of lacustrine sediments, these intervals consist largely of poorly drained and well-drained floodplain deposits in the type section. The facies variations and southeast-directed paleoflow in the Ward Point Member record modest uplift associated with the growth of the salt-cored Minudie Anticline. The North Reef Member (951.7-1125 m) is composed of redbeds and two distinctive multistorey channel bodies. This uppermost member records a shift to more arid, oxidizing conditions, was the precursor to a major phase of salt withdrawal, and represents a transition to the overlying Little River Formation. The sedimentological framework, revised stratigraphy, and detailed measured section and map will provide a foundation for future study of this remarkable Pennsylvanian exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.