Part of the Earth Sciences CommonsThis Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska -Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska -Lincoln. AbstractSequence stratigraphy emphasizes facies relationships and stratal architecture within a chronological framework. Despite its wide use, sequence stratigraphy has yet to be included in any stratigraphic code or guide. This lack of standardization reflects the existence of competing approaches (or models) and confusing or even conflicting terminology. Standardization of sequence stratigraphy requires the definition of the fundamental model-independent concepts, units, bounding surfaces and workflow that outline the foundation of the method. A standardized scheme needs to be sufficiently broad to encompass all possible choices of approach, rather than being limited to a single approach or model.A sequence stratigraphic framework includes genetic units that result from the interplay of accommodation and sedimentation (i.e., forced regressive, lowstand and highstand normal regressive, and transgressive), which are bounded by "sequence stratigraphic" surfaces. Each genetic unit is defined by specific stratal stacking patterns and bounding surfaces, and consists of a tract of correlatable depositional systems (i.e., a "systems tract"). The mappability of systems tracts and sequence stratigraphic surfaces depends on depositional setting and the types of data available for analysis. It is this high degree of variability in the precise expression of sequence stratigraphic units and bounding surfaces that requires the adoption of a methodology that is sufficiently flexible that it can accommodate the range of likely expressions. The integration of outcrop, core, well-log and seismic data affords the optimal approach to the application of sequence stratigraphy. Missing insights from one set of data or another may limit the "resolution" of the sequence stratigraphic interpretation. 1 2 c a t u n e a n u e t a l . i n e a r t h -science r e v i e w s 92 (2009)
The three-dimensional geometry of fluvial channel bodies and valley fills has received much less attention than their internal structure, despite the fact that many subsurface analyses draw upon the geometry of suitable fluvial analogues. Although channel-body geometry has been widely linked to base-level change and accommodation, few studies have evaluated the influence of local geomorphic controls. To remedy these deficiencies, we review the terminology for describing channel-body geometry, and present a literature dataset that represents more than 1500 bedrock and Quaternary fluvial bodies for which width (W) and thickness (T) are recorded. Twelve types of channel bodies and valley fills are distinguished based on their geomorphic setting, geometry, and internal structure, and log-log plots of W against T are presented for each type. Narrow and broad ribbons (W/T , 5 and 5-15, respectively) and narrow, broad, and very broad sheets (W/T 15-100, 100-1000, and. 1000, respectively) are distinguished. The dataset allows an informed selection of analogues for subsurface applications, and spreadsheets and graphs can be downloaded from a data repository. Mobile-channel belts are mainly the deposits of braided and low-sinuosity rivers, which may exceed 1 km in composite thickness and 1300 km in width. Their overwhelming dominance throughout geological time reflects their link to tectonic activity, exhumation events, and high sediment supply. Some deposits that rest on flat-lying bedrock unconformities cover areas. 70,000 km 2. In contrast, meandering river bodies in the dataset are , 38 m thick and , 15 km wide, and the organized flow conditions necessary for their development may have been unusual. They do not appear to have built basin-scale deposits. Fixed channels and poorly channelized systems are divided into distributary systems (channels on megafans, deltas, and distal alluvial fans, and in crevasse systems and avulsion deposits), through-going rivers, and channels in eolian settings. Because width/maximum depth of many modern alluvial channels is between 5 and 15, these bodies probably record an initial aspect ratio followed by modest widening prior to filling or avulsion. The narrow form (W/T typically , 15) commonly reflects bank resistance and rapid filling, although some are associated with base-level rise. Exceptionally narrow bodies (W/T locally , 1) may additionally reflect unusually deep incision, compactional thickening, filling by mass-flow deposits, balanced aggradation of natural levees and channels, thawing of frozen substrates, and channel reoccupation. Valley fills rest on older bedrock or represent a brief hiatus within marine and alluvial successions. Many bedrock valley fills have W/T , 20 due to deep incision along tectonic lineaments and stacking along faults. Within marine and alluvial strata, upper Paleozoic valley fills appear larger than Mesozoic examples, possibly reflecting the influence of large glacioeustatic fluctuations in the Paleozoic. Valley fills in sub-glacial and proglacial ...
Fluvial landscapes diversified markedly over the 250 million years between the Cambrian and Pennsylvanian periods. The diversification occurred in tandem with the evolution of vascular plants and expanding vegetation cover. In the absence of widespread vegetation, landscapes during the Cambrian and Ordovican periods were dominated by rivers with wide sand-beds and aeolian tracts. During the late Silurian and Devonian periods, the appearance of vascular plants with root systems was associated with the development of channelled sand-bed rivers, meandering rivers and muddy floodplains. The widespread expansion of trees by the Early Pennsylvanian marks the appearance of narrow fixed channels, some representing anabranching systems, and braided rivers with vegetated islands. We conclude that the development of roots stabilized the banks of rivers and streams. The subsequent appearance of woody debris led to log jams that promoted the rapid formation of new river channels. Our contention is supported by studies of modern fluvial systems and laboratory experiments. In turn, fluvial styles influenced plant evolution as new ecological settings developed along the fluvial systems. We suggest that terrestrial plant and landscape evolution allowed colonization by an increasingly diverse array of organisms
Anastomosing river plains of the Channel Country, central Australia, have aggraded slowly over the past 100 ka. Channel sediments accumulate mainly as accretionary benches of mud and sand, sandy channel‐base sheets and vegetation‐shadow deposits. The channels are laterally stable and the sediments have aggraded locally against erosional banks of tough floodplain muds. Channel sediments are profoundly affected by desiccation during dry periods and by bioturbation caused by within‐channel trees and burrowing invertebrates, especially crayfish. Excavations show that mud‐dominated channel bodies of low width:thickness ratio are generated by a combination of vertical and lateral accretion. Levees and braided surfaces, composed mainly of mud aggregates, border the channels and are activated during valley‐wide floods which lay down distal mud sheets. Floodplain muds are converted to vertisols with gilgai, deep desiccation cracks, and impregnations of carbonate and gypsum. A fixed‐channel facies model is applicable to the Channel Country river deposits. Anastomosis apparently results from the need for the system to move large volumes of water and moderate sediment loads across low‐gradient interior basins. Channels distant from upland source areas receive an abundant supply of pedogenic, sand‐sized mud aggregates generated on adjacent floodplains and reworked into braid bars during valley‐wide floods. Some quartz sand is provided from excavation of subsurface Pleistocene sands in deep channels and waterholes and from aeolian dunes on the floodplains. Adjacent gibber plains supply some gravel to the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.