The chaperonin GroEL is a large, double-ring structure that, together with ATP and the cochaperonin GroES, assists protein folding in vivo. GroES forms an asymmetric complex with GroEL in which a single GroES ring binds one end of the GroEL cylinder. Cross-linking studies reveal that polypeptide binding occurs exclusively to the GroEL ring not occupied by GroES (trans). During the folding reaction, however, released GroES can rebind to the GroEL ring containing polypeptide (cis). The polypeptide is held tightly in a proteolytically protected environment in cis complexes, in the presence of ADP. Single turnover experiments with ornithine transcarbamylase reveal that polypeptide is productively released from the cis but not the trans complex. These observations suggest a two-step mechanism for GroEL-mediated folding. First, GroES displaces the polypeptide from its initial binding sites, sequestering it in the GroEL central cavity. Second, ATP hydrolysis induces release of GroES and productive release of polypeptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.