The chaperonin GroEL is a large, double-ring structure that, together with ATP and the cochaperonin GroES, assists protein folding in vivo. GroES forms an asymmetric complex with GroEL in which a single GroES ring binds one end of the GroEL cylinder. Cross-linking studies reveal that polypeptide binding occurs exclusively to the GroEL ring not occupied by GroES (trans). During the folding reaction, however, released GroES can rebind to the GroEL ring containing polypeptide (cis). The polypeptide is held tightly in a proteolytically protected environment in cis complexes, in the presence of ADP. Single turnover experiments with ornithine transcarbamylase reveal that polypeptide is productively released from the cis but not the trans complex. These observations suggest a two-step mechanism for GroEL-mediated folding. First, GroES displaces the polypeptide from its initial binding sites, sequestering it in the GroEL central cavity. Second, ATP hydrolysis induces release of GroES and productive release of polypeptide.
As observed previously, tetraspanin palmitoylation promotes tetraspanin microdomain assembly. Here, we show that palmitoylated integrins (α3, α6, and β4 subunits) and tetraspanins (CD9, CD81, and CD63) coexist in substantially overlapping complexes. Removal of β4 palmitoylation sites markedly impaired cell spreading and signaling through p130Cas on laminin substrate. Also in palmitoylation-deficient β4, secondary associations with tetraspanins (CD9, CD81, and CD63) were diminished and cell surface CD9 clustering was decreased, whereas core α6β4–CD151 complex formation was unaltered. There is also a functional connection between CD9 and β4 integrins, as evidenced by anti-CD9 antibody effects on β4-dependent cell spreading. Notably, β4 palmitoylation neither increased localization into “light membrane” fractions of sucrose gradients nor decreased solubility in nonionic detergents—hence it does not promote lipid raft association. Instead, palmitoylation of β4 (and of the closely associated tetraspanin CD151) promotes CD151–α6β4 incorporation into a network of secondary tetraspanin interactions (with CD9, CD81, CD63, etc.), which provides a novel framework for functional regulation.
It is a well-established fact that tetraspanin proteins, a large family of integral membrane proteins involved in cell motility, fusion and signalling, associate extensively with one another and with other transmembrane and membrane-proximal proteins. In this study, we present results strongly suggesting that tetraspanin homodimers are fundamental units within larger tetraspanin complexes. Evidence for constitutive CD9 homodimers was obtained using several cell lines, utilizing the following four methods: (1) spontaneous cross-linking via intermolecular disulphide bonds, (2) use of a cysteine-reactive covalent cross-linking agent, (3) use of an amino-reactive covalent cross-linking agent, and (4) covalent cross-linking via direct intermolecular disulphide bridging between unpalmitoylated membrane-proximal cysteine residues. In the last case, incubation of cells with the palmitoylation inhibitor 2-bromopalmitate exposed membrane-proximal cysteine residues, thus effectively promoting 'zero-length' cross-linking to stabilize homodimers. Similar to CD9, other tetraspanins (CD81 and CD151) also showed a tendency to homodimerize. Tetraspanin homodimers were assembled from newly synthesized proteins in the Golgi, as evidenced by cycloheximide and Brefeldin A inhibition studies. Importantly, tetraspanin homodimers appeared on the cell surface and participated in typical 'tetraspanin web' interactions with other proteins. Whereas homodimers were the predominant cross-linked species, we also observed some higher-order complexes (trimers, tetramers or higher) and a much lower level of cross-linking between different tetraspanins (CD81-CD9, CD9-CD151, CD81-CD151). In conclusion, our results strongly suggest that tetraspanin homodimers, formed in the Golgi and present at the cell surface, serve as building blocks for the assembly of larger, multicomponent tetraspanin protein complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.