Tumour-associated macrophages, TAMs, play a pivotal role in tumour growth and metastasis by promoting tumour angiogenesis. Treatment with clodronate encapsulated in liposomes (clodrolip) efficiently depleted these phagocytic cells in the murine F9 teratocarcinoma and human A673 rhabdomyosarcoma mouse tumour models resulting in significant inhibition of tumour growth ranging from 75 to 492%, depending on therapy and schedule. Tumour inhibition was accompanied by a drastic reduction in blood vessel density in the tumour tissue. Vascular endothelial growth factor (VEGF) is one of the major inducers of tumour angiogenesis and is also required for macrophage recruitment. The strongest effects were observed with the combination therapy of clodrolip and a VEGF-neutralising antibody, whereas free clodronate was not significantly active. Immunohistologic evaluation of the tumours showed significant depletion of F4/80 þ and MOMA-1 þ and a less pronounced depletion of CD11b þ TAMs. Blood vessel staining (CD31) and quantification of the vessels as well as TAMs and tumour-associated dendritic cells (TADCs) in the A673 model showed reduction rates of 85 to 494%, even 9 days after the end of therapy. In addition, CD11c þ TADCs, which have been shown to potentially differentiate into endothelial-like cells upon stimulation by tumour released growth and differentiation factors, were similarly reduced by clodrolip or antibody treatment. These results validate clodrolip therapy in combination with angiogenesis inhibitors as a promising novel strategy for an indirect cancer therapy aimed at the haematopoietic precursor cells that stimulate tumour growth and dissemination and as a tool to study the role of macrophages and dendritic cells in tumorigenesis.
Protein transduction domains (PTDs) are short basic peptide sequences present in many cellular and viral proteins that mediate translocation across cellular membranes. PTDs have become widely used as tools for the delivery of high M r polypetides, polynucleotides, or nanoparticles to cells in culture; and even the transfer of cargo molecules to the tissue of live animals has been reported. These cell-permeable peptides are functional when fused in-frame to recombinant polypeptides or when chemically coupled to their cargo. The mechanism responsible for PTD-mediated membrane translocation is controversially discussed and may vary among the various PTDs reported in the literature. Thus direct physical interaction with membrane lipids resulting in vectorial delivery to cells has been proposed for the Antennapedia (Antp) PTD, whereas uptake by the retroviral TAT (transactivator of transcription) protein PTD seems to require cell surface-expressed glycosaminoglycans. The view that PTD-mediated cellular uptake is energy-independent has been dismissed recently as an artifact resulting from fixation of cells. The data reported here agree with and further extend this work. They support the idea that certain PTDs promote cellular uptake via endocytosis and require the expression of negatively charged glycosaminoglycans on the surface of the target cells. Uptake of Antp PTD conjugates or peptide-derivatized liposomes was blocked by heparan sulfate proteoglycans, whereas TAT-mediated uptake was inhibited by both heparin and dextran sulfate. Mutant cells defective for glycosaminoglycan synthesis showed dramatically reduced Antp-or TAT-mediated transmembrane transport confirming the role of these complex polysaccharides in PTD-mediated cellular uptake. The fact that PTDs selectively interact with distinct glycosaminoglycan species has implications for therapeutic applications and may allow targeting of selective tissues that differ in their surface-expressed glycosaminoglycan patterns.
Various mathematical approaches have been devised to relate the cytotoxic effect of drugs in cell culture to the drug concentration added to the cell culture medium. Such approaches can satisfactorily account for drug response when the drugs are free in solution, but the approach becomes problematic when the drug is delivered in a drug delivery system, such as a liposome. To address this problem, we have developed a simple model that assumes that the cytotoxic potency of a drug is a function of the intracellular drug level in a critical compartment. Upon exposure to drug, cell death commences after a lag time, and the cell kill rate is dependent on the amount of drug in the critical intracellular compartment. The computed number of cells in culture, at any time after exposure to the drug, takes into account the cell proliferation rate, the cell kill rate, the average intracellular drug concentration, and a lag time for cell killing. We have applied this model to compare the cytotoxic effect of doxorubicin (DOX), or DOX encapsulated in a liposome that is targeted to CD44 on B16F10 melanoma cells in culture. CD44 is the surface receptor that binds to hyaluronan and is overexpressed on various cancer cells, including B16F10. We have shown previously that the drug encapsulated in hyaluronan-targeted liposomes was more potent than was the free drug. The model required the determination of the cell-associated DOX after the cells were incubated with various concentrations of the free or the encapsulated drug for 3 h, and the quantification of cell number at various times after exposure to the drug. The uptake of encapsulated drug was greater than that of the free drug, and the ratio of cell association of encapsulated: free drug was 1.3 at 0.5 g/ml and increased to 3.3 at 20 g/ml DOX. The results demonstrate that the enhanced potency of the encapsulated drug could stem from its enhanced uptake. However, in certain cases, where larger amounts of the free drug were added, such that the intracellular amounts of drug exceeded those obtained from the encapsulated drug, the numbers of viable cells were still significantly smaller for the encapsulated drug. This finding demonstrates that for given amounts of intracellular DOX, the encapsulated form was more efficient in killing B16F10 cells than the free drug. The outcome was expressed in the kinetic model as a 5-6-fold larger rate constant of cell killing potency for the encapsulated drug versus the free drug. The model provides a quantitative framework for comparing the cytotoxic effect in cultured cells when applying the drug in the free form or in a delivery system.
A trifunctional bioconjugate consisting of the SV40 nuclear localization signal (NLS) peptide, an aliphatic triamine ligand, and the DNA intercalating pyrene has been synthesized and quantitatively labeled with [(99m)Tc(OH(2))(3)(CO)(3)](+). The radiotoxicity of the resulting nucleus-targeting radiopharmaceutical on B16F1 mouse melanoma cells has been investigated to evaluate the activity of Auger and Coster-Kronig electrons on the viability of cells. We found a dose-dependent significant radiotoxicity of the nucleus-targeting radiopharmaceutical clearly related to the low energy decay of (99m)Tc. These principal results imply a possible therapeutic strategy based on the use of the low-energy Auger electron-emitting (99m)Tc radionuclide attached to nucleus-targeting molecules and comprising an intercalator. Highly efficient DNA targeting vectors could complement the usual role of (99m)Tc in diagnostic applications. The Auger electrons emitted by the (99m)Tc nuclide induce DNA damage leading ultimately, through a mitotic catastrophe pathway, to necrotic cell death. Non-DNA-targeting (99m)Tc complexes display much lower radiotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.