Cadherins are a large family of cell -cell adhesion molecules acting in a homotypic, homophilic manner that play an important role in the maintenance of tissue integrity. In the human kidney, several members of the cadherin family (including E-and N-cadherin, cadherin-6, -8 and -11) are expressed in a controlled spatiotemporal pattern. Cadherin-16, also called kidney-specific (Ksp-) cadherin, is exclusively expressed in epithelial cells of the adult kidney. In renal cell carcinomas (RCCs), which are considered to originate from epithelial kidney tubular cells, a complex pattern of cadherin expression can be observed, but Ksp-cadherin expression has not been analysed so far. In the present study, we show that the expression of Ksp-cadherin is completely abrogated in RCCs. Whereas Kspcadherin can be detected at later stages of tubulogenesis during human renal development and in the distal tubules of adult kidneys, no expression was found by immunohistochemistry or Western blot analysis in RCC tumour tissues and several RCC cell lines. However, despite the lack of protein expression, mRNA synthesis of Ksp-cadherin could be detected by reverse transcriptasepolymerase chain reaction analysis in all RCC tissues and most of the RCC cell lines studied, although at a reduced level. The loss of Ksp-cadherin protein was only observed in the malignant part of the tumour kidneys, whereas in the normal part of the affected kidneys Ksp-cadherin expression was clearly detected. These results indicate a downregulation of Ksp-cadherin in RCC and suggest a role for this cell adhesion molecule in tumour suppression.
Until recently, adenovirus-based gene therapy has been almost exclusively based on human adenovirus serotype 5 (Ad5). The aim of this study was to systematically compare the efficiency of transduction of primary muscle cells from various species by two adenoviral vectors from subgroups C and D. Transduction of a panel of myoblasts demonstrated a striking specificity of an Ad19a-based replication-defective E1-deleted vector (Ad19aEGFP) for human cells, whereas the Ad5-based vector had high affinity for nonhuman primate myoblasts. Transgene expression correlated well with cell-associated vector genomes. Up to 6.59% of the initially applied Ad19aEGFP vector particles were taken up by human myoblasts, as compared with 0.1% of the corresponding Ad5 vector. Remarkably, Ad19aEGFP but not Ad5EGFP efficiently transduced differentiated human myotubes, an in vitro model for skeletal muscle transduction. Uptake of Ad19aEGFP vector particles in human myotubes was 12-fold more efficient than that of Ad5EGFP. Moreover, both vectors demonstrated an early block at the level of vector uptake in mouse myoblasts and rat L6 cells. Investigation of the underlying mechanism for binding and uptake of the two vectors by human myoblasts showed high susceptibility for Ad19a to neuraminidase and wheat germ agglutinin (WGA) lectin, whereas Ad5-mediated transduction was dependent on binding to the coxsackie-adenovirus receptor (CAR) and sensitive to soluble RGD peptide and heparin. Our study offers insights into species-dependent factors that determine Ad tropism and, moreover, provides a basis for application of the novel Ad19a-based vector for gene transfer into human skeletal muscle.
BackgroundInterstitial fibroblasts are a minor, but nevertheless very important, component of the kidney. They secrete and remodel extracellular matrix and they produce active compounds such as erythropoietin. However, studying human renal fibroblasts has been hampered by the lack of appropriate surface markers.Methods and FindingsThe expression of cadherin-9 in various human renal cell lines and tissues was studied on the mRNA level by RT-PCR and on the protein level with the help of newly generated cadherin-9 antibodies. The classical type II cadherin-9, so far only described in the neural system, was identified as a reliable surface marker for renal fibroblasts. Compared to FSP1, a widely-used cytosolic renal fibroblast marker, cadherin-9 showed a more restricted expression pattern in human kidney. Under pathological conditions, cadherin-9 was expressed in the stroma of renal cell carcinoma, but not in the tumor cells themselves, and in renal fibrosis the percentage of cadherin-9-positive cells was clearly elevated 3 to 5 times compared to healthy kidney tissue. Induction of epithelial mesenchymal transition in renal epithelial cells with cyclosporin-A, which causes renal fibrosis as a side effect, induced cadherin-9 expression. Functional studies following siRNA-mediated knockdown of cadherin-9 revealed that it acts in the kidney like a typical classical cadherin. It was found to be associated with catenins and to mediate homophilic but not heterophilic cell interactions.ConclusionsCadherin-9 represents a novel and reliable cell surface marker for fibroblasts in healthy and diseased kidneys. Together with the established marker molecules FSP1, CD45 and α smooth muscle actin, cadherin-9 can now be used to differentiate the heterogenic pool of renal fibroblasts into resident and activated fibroblasts, immigrated bone marrow derived fibroblast precursors and cells in different stages of epithelial mesenchymal transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.