Pentamidine, an FDA-approved antiparasitic drug, was recently identified as an outer membrane disrupting synergist that potentiates erythromycin, rifampicin, and novobiocin against Gram-negative bacteria. The same study also described a preliminary structure–activity relationship using commercially available pentamidine analogues. We here report the design, synthesis, and evaluation of a broader panel of bis-amidines inspired by pentamidine. The present study both validates the previously observed synergistic activity reported for pentamidine, while further assessing the capacity for structurally similar bis-amidines to also potentiate Gram-positive specific antibiotics against Gram-negative pathogens. Among the bis-amidines prepared, a number of them were found to exhibit synergistic activity greater than pentamidine. These synergists were shown to effectively potentiate the activity of Gram-positive specific antibiotics against multiple Gram-negative pathogens such as Acinetobacter baumannii , Klebsiella pneumoniae , Pseudomonas aeruginosa, and Escherichia coli , including polymyxin- and carbapenem-resistant strains.
Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking genetically engineered protein-based hydrogel as a 3D cell culture system that combines several key features: (1) Mild and straightforward encapsulation meters (1) ease of ut I am not so sure.encapsulation of the cells, without the need of an external crosslinker. (2) Supramolecular assembly resulting in a fibrous architecture that recapitulates some of the unique mechanical characteristics of the ECM, i.e. strain-stiffening and self-healing behavior. (3) A modular approach allowing controlled incorporation of the biochemical cue density (integrin binding RGD domains). We tested the gels by encapsulating MG-63 osteoblastic cells and found that encapsulated cells not only respond to higher RGD density, but also to overall gel concentration. Cells in 1% and 2% (weight fraction) protein gels showed spreading and proliferation, provided a relative RGD density of at least 50%. In contrast, in 4% gels very little spreading and proliferation occurred, even for a relative RGD density of 100%. The independent control over both mechanical and biochemical cues obtained in this modular approach renders our hydrogels suitable to study cellular responses under highly defined conditions.
With increasing rates of resistance toward commonly used antibiotics, especially among Gram-negative bacteria, there is renewed interested in polymyxins. Polymyxins are lipopeptide antibiotics with potent anti-Gram-negative activity and are generally believed to target lipid A, the lipopolysaccharide (LPS) anchor found in the outer membrane of Gram-negative bacteria. To characterize the stereochemical aspects of their mechanism(s) of action, we synthesized the full enantiomers of polymyxin B and the polymyxin B nonapeptide (PMBN). Both compounds were compared with the natural compounds in biological and biophysical assays, revealing strongly reduced antibacterial activity for the enantiomeric species. The enantiomeric compounds also exhibit reduced LPS binding, lower outer membrane (OM) permeabilization, and loss of synergetic potential. These findings provide new insights into the stereochemical requirements underlying the mechanisms of action of polymyxin B and PMBN.
Vancomycin functions by binding to lipid II, the penultimate bacterial cell wall building block used by both Gram-positive and Gram-negative species. However, vancomycin is generally only able to exert its antimicrobial effect against Gram-positive strains as it cannot pass the outer membrane (OM) of Gram-negative bacteria. To address this challenge, we here describe efforts to conjugate vancomycin to the OM disrupting polymyxin E nonapeptide (PMEN) to yield the hybrid “vancomyxins”. In designing these hybrid antibiotics, different spacers and conjugation sites were explored for connecting vancomycin and PMEN. The vancomyxins show improved activity against Gram-negative strains compared with the activity of vancomycin or vancomycin supplemented with PMEN separately. In addition, the vancomyxins maintain the antimicrobial effect of vancomycin against Gram-positive strains and, in some cases, show enhanced activity against vancomycin-resistant strains. The hybrid antibiotics described here have reduced nephrotoxicity when compared with clinically used polymyxin antibiotics. This study demonstrates that covalent conjugation to an OM disruptor contributes to sensitizing Gram-negative strains to vancomycin while retaining anti-Gram-positive activity.
Deubiquitinases (DUBs) are a family of enzymes that regulate the ubiquitin signaling cascade by removing ubiquitin from specific proteins in response to distinct signals. DUBs that belong to the metalloprotease family (metalloDUBs) contain Zn2+ in their active sites and are an integral part of distinct cellular protein complexes. Little is known about these enzymes because of the lack of specific probes. Described here is a Ub‐based probe that contains a ubiquitin moiety modified at its C‐terminus with a Zn2+ chelating group based on 8‐mercaptoquinoline, and a modification at the N‐terminus with either a fluorescent tag or a pull‐down tag. The probe is validated using Rpn11, a metalloDUB found in the 26S proteasome complex. This probe binds to metalloDUBs and efficiently pulled down overexpressed metalloDUBs from a HeLa cell lysate. Such probes may be used to study the mechanism of metalloDUBs in detail and allow better understanding of their biochemical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.