Scenario-based methods for the assessment of Automated Vehicles (AVs) are widely supported by many players in the automotive field. Scenarios captured from real-world data can be used to define the scenarios for the assessment and to estimate their relevance. Therefore, different techniques are proposed for capturing scenarios from real-world data. In this paper, we propose a new method to capture scenarios from real-world data using a two-step approach. The first step consists in automatically labeling the data with tags. Second, we mine the scenarios, represented by a combination of tags, based on the labeled tags. One of the benefits of our approach is that the tags can be used to identify characteristics of a scenario that are shared among different type of scenarios. In this way, these characteristics need to be identified only once. Furthermore, the method is not specific for one type of scenario and, therefore, it can be applied to a large variety of scenarios. We provide two examples to illustrate the method. This paper is concluded with some promising future possibilities for our approach, such as automatic generation of scenarios for the assessment of automated vehicles.
This paper aims at detecting the presence of group structures in complex artificial societies by solely observing and analysing the interactions occurring among the artificial agents. Our approach combines: (1) an unsupervised method for clustering interactions into two possible classes, namely ingroup and out-group, (2) reinforcement learning for deriving the existing levels of collaboration within the society, and (3) an evolutionary algorithm for the detection of group structures and the assignment of group identities to the agents. Under a case study of static societies-i.e. the agents do not evolve their social preferences-where agents interact with each other by means of the Ultimatum Game, our approach proves to be successful for small-sized social networks independently on the underlying social structure of the society; promising results are also registered for mid-size societies.
This paper shows how multiobjective evolutionary algorithms can be used to procedurally generate complete and playable maps for real-time strategy (RTS) games. We devise heuristic objective functions that measure properties of maps that impact important aspects of gameplay experience. To show the generality of our approach, we design two different evolvable map representations, one for an imaginary generic strategy game based on heightmaps, and one for the classic RTS game StarCraft. The effect of combining tuples or triples of the objective functions are investigated in systematic experiments, in particular which of the objectives are partially conflicting. A selection of generated maps are visually evaluated by a population of skilled StarCraft players, confirming that most of our objectives 123Genet Program Evolvable Mach (2013) 14:245-277 DOI 10.1007 correspond to perceived gameplay qualities. Our method could be used to completely automate in-game controlled map generation, enabling player-adaptive games, or as a design support tool for human designers.
Abstract-We present a technology demonstrator for an adaptive serious game for teaching conflict resolution and discuss the research questions associated with the project. The prototype is a single-player 3D mini-game which simulates a resource management conflict scenario. In order to teach the player how to resolve this type of conflict, the underlying system generates level content automatically which adapts to player experience and behaviour. Preliminary results demonstrate the efficiency of the procedural content generation mechanism in guiding the training of players towards targeted learning objectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.