Dysregulation of transformation growth factor β (TGFβ) signaling has been reported in human psoriasis. However, the causal role of TGFβ in psoriasis has not been given attention until our recent report that the transgenic mice expressing wild-type TGFβ1 in the epidermis using a keratin 5 promoter (K5.TGFβ1wt) developed psoriasis-like skin inflammation. Additional experimental data further support the causal role of TGFβ1 overexpression in psoriasis. First, we temporally induced TGFβ1 expression in keratinocytes in our gene-switch-TGFβ1wt transgenic mice and found that inflammation severity correlated with on-and-off switch of TGFβ1wt transgene expression. Second, deletion of T cells in K5.TGFβ1wt mice significantly delayed the development of psoriatic lesions. Third, therapeutic approaches effective for human psoriasis, i.e. Enbrel and Rosiglitazone (Avandia®), are also effective in relieving the symptoms seen in K5.TGFβ1wt mice. Future studies will dissect specific mechanisms and identify key factors in the TGFβ1-induced skin inflammation. Our mouse models will provide a useful tool to test novel therapeutic interventions and help to design specific therapeutic approaches for inflammatory skin disorders, including human psoriasis.
Ag-specific CD4 T cells transferred into unirradiated Ag-bearing recipients proliferate, but survival and accumulation of proliferating cells is not extensive and the donor cells do not acquire effector functions. We previously showed that a single costimulatory signal delivered by an agonist Ab to OX40 (CD134) promotes accumulation of proliferating cells and promotes differentiation to effector CD4 T cells capable of secreting IFN-γ. In this study, we determined whether OX40 costimulation requires supporting costimulatory or differentiation signals to drive acquisition of effector T cell function. We report that OX40 engagement drives effector T cell differentiation in the absence of CD28 and CD40 signals. Two important regulators of Th1 differentiation, IL-12R and T-bet, also are not required for acquisition of effector function in CD4 T cells responsive to OX40 stimulation. Finally, we show that CD25-deficient CD4 T cells produce little IFN-γ in the presence of OX40 costimulation compared with wild type, suggesting that IL-2R signaling is required for efficient OX40-mediated differentiation to IFN-γ secretion.
To use mice with chronic hyperproliferative skin inflammation as psoriasis models, their thorough phenotypic and functional characterization is indispensable. Mice with keratin 5 promoter-controlled overexpression of latent human Transforming Growth Factor (TGF)beta1 within the basal epidermis (K5.TGF beta 1 mice) show a psoriasiform phenotype, but the underlying pathogenic mechanisms are not entirely clear. To elucidate the contribution of T lymphocytes to the pathogenesis in K5.TGF beta 1 mice, we used three complementary approaches: first, peripheral T cells were eradicated via systemic treatment with CD3- or CD4-depleting antibodies. However, this elimination did not alleviate the chronic inflammatory disorder. Second, bone marrow transplantation from transgenic mice into wildtype recipients and vice versa resulted in the expected reconstitution of both adaptive and innate immune system but had little effect on the cutaneous phenotype both in wildtype and transgenic chimeras. Third, based on the hypothesis that the disease course could be modulated by regulatory T cells (Tregs), we expanded Tregs in vivo using a superagonistic anti-CD28 antibody. While this treatment achieved a threefold increase in Foxp3-expressing Tregs, there was little, if any, effect on the chronic skin inflammation. We conclude from our findings that T cells play little, if any, role in the skin lesions of K5.TGF beta 1 mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.