Hyaluronic acid (HA) is a naturally occurring biodegradable polymer with a variety of applications in medicine including scaffolding for tissue engineering, dermatological fillers, and viscosupplementation for osteoarthritis treatment. HA is available in most connective tissues in body fluids such as synovial fluid and the vitreous humor of the eye. HA is responsible for several structural properties of tissues as a component of extracellular matrix (ECM) and is involved in cellular signaling. Degradation of HA is a step-wise process that can occur via enzymatic or non-enzymatic reactions. A reduction in HA mass or molecular weight via degradation or slowing of synthesis affects physical and chemical properties such as tissue volume, viscosity, and elasticity. This review addresses the distribution, turnover, and tissue-specific properties of HA. This information is used as context for considering recent products and strategies for modifying the viscoelastic properties of HA in tissue engineering, as a dermal filler, and in osteoarthritis treatment.
Background Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 – 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging. Objective To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging. Conclusion Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed.
An important limitation in the development of biodegradable polymer microspheres for controlled-release drug delivery applications has been the difficulty of specifically designing systems exhibiting precisely controlled release rates. Because microparticle size is a primary determinant of drug release, we developed a methodology for controlling release kinetics employing monodisperse poly(D,L-lactide-co-glycolide) (PLG) microspheres. We fabricated 20-, 40- and 65-microm diameter rhodamine-containing microspheres and 10-, 50- and 100-microm diameter piroxicam-containing microspheres at various loadings from 1 to 20%. In vitro release kinetics were determined for each preparation. Drug release depended strongly on microsphere diameter with 10- and 20-microm particles exhibiting concave-downward release profiles while larger particles resulted in sigmoidal release profiles. Overall, the rate of release decreased and the duration increased with increasing microsphere size. Release kinetics from mixtures of uniform microspheres corresponded to mass-weighted averages of the individual microsphere release kinetics. Appropriate mixtures of uniform microspheres were identified that provided constant (zero-order) release of rhodamine and piroxicam for 8 and 14 days, respectively. Mixing of uniform microspheres, as well as control of microsphere size distribution, may provide an improved methodology to tailor small-molecule drug-release kinetics from simple, biodegradable-polymer microparticles.
Spatial and temporal control of bioactive signals in three-dimensional (3D) tissue engineering scaffolds is greatly desired. Coupled together, these attributes may mimic and maintain complex signal patterns, such as those observed during axonal regeneration or neovascularization. Seamless polymer constructs may provide a route to achieve spatial control of signal distribution. In this study, a novel microparticle-based scaffold fabrication technique is introduced as a method to create 3D scaffolds with spatial control over model dyes using uniform poly(D,L-lactide-co-glycolide) microspheres. Uniform microspheres were produced using the Precision Particle Fabrication technique. Scaffolds were assembled by flowing microsphere suspensions into a cylindrical glass mold, and then microspheres were physically attached to form a continuous scaffold using ethanol treatment. An ethanol soak of 1 h was found to be optimum for improved mechanical characteristics. Morphological and physical characterization of the scaffolds revealed that microsphere matrices were porous (41.1 ± 2.1%) and well connected, and their compressive stiffness ranged from 142 to 306 kPa. Culturing chondrocytes on the scaffolds revealed the compatibility of these substrates with cell attachment and viability. In addition, bilayered, multilayered, and gradient scaffolds were fabricated, exhibiting excellent spatial control and resolution. Such novel scaffolds can serve as sustained delivery devices of heterogeneous signals in a continuous and seamless manner, and may be particularly useful in future interfacial tissue engineering investigations.
Interrogating biological systems is often limited by access to biological probes. The emergence of "click chemistry" has revolutionized bioconjugate chemistry by providing facile reaction conditions amenable to both biologic molecules and small molecule probes such as fluorophores, toxins, or therapeutics. One particularly popular version is the copper-catalyzed azide-alkyne cycloaddition (AAC) reaction, which has spawned new alternatives such as the strain-promoted azide-alkyne cycloaddition reaction, among others. This focused review highlights practical approaches to AAC reactions for the synthesis of peptide or protein bioconjugates and contrasts current challenges and limitations in light of recent advances in the field. The conical success of antibody drug conjugates has expanded the toolbox of linkers and payloads to facilitate practical applications of bioconjugation to create novel therapeutics and biologic probes. The AAC reaction in particular is poised to enable a large set of functionalized molecules as a combinatorial approach to high-throughput bioconjugate generation, screening, and honing of lead compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.