Cardiac vagal neurons play a critical role in the control of heart rate and cardiac function. These neurons, which are primarily located in the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus (DMNX), dominate the neural control of heart rate under normal conditions. Cardiac vagal activity is diminished and unresponsive in many disease states, while restoration of parasympathetic activity to the heart lessens ischemia and arrhythmias and decreases the risk of sudden death. Recent work has demonstrated that cardiac vagal neurons are intrinsically silent and therefore rely on synaptic input to control their firing. To date, three major synaptic inputs to cardiac vagal neurons have been identified. Stimulation of the nucleus tractus solitarius evokes a glutamatergic pathway that activates both NMDA and non‐NMDA glutamatergic postsynaptic currents in cardiac vagal neurons. Acetylcholine excites cardiac vagal neurons via three mechanisms, activating a direct ligand‐gated postsynaptic nicotinic receptor, enhancing postsynaptic non‐NMDA currents, and presynaptically by facilitating transmitter release. This enhancement by nicotine is dependent upon activation of pre‐ and postsynaptic P‐type voltage‐gated calcium channels. Additionally, there is a GABAergic innervation of cardiac vagal neurons. The transsynaptic pseudorabies virus that expresses GFP (PRV‐GFP) has been used to identify, for subsequent electrophysiologic study, neurons that project to cardiac vagal neurons. Bartha PRV‐GFP‐labeled neurons retain their normal electrophysiological properties, and the labeled baroreflex pathways that control heart rate are unaltered by the virus.
Maternal cigarette smoking and prenatal nicotine exposure are the highest risk factors for sudden infant death syndrome (SIDS). During hypoxia, respiratory frequency and heart rate transiently increase and subsequently decrease. These biphasic cardiorespiratory responses normally serve to prolong survival during hypoxia by reducing the metabolic demands of cardiac and respiratory muscles. However, exaggerated responses to hypoxia may be life threatening and have been implicated in SIDS. Heart rate is primarily determined by the activity of brainstem preganglionic cardioinhibitory vagal neurons (CVNs) in the nucleus ambiguus. We developed an in vitro rat brainstem slice preparation that maintains rhythmic inspiratory-related activity and contains fluorescently labeled CVNs. Synaptic inputs to CVNs were examined using patch-clamp electrophysiological techniques. Hypoxia evoked a biphasic change in the frequency of both GABAergic and glycinergic IPSCs in CVNs, comprised of an initial increase followed by a decrease in IPSC frequency. Prenatal exposure to nicotine changed the GABAergic response to hypoxia from a biphasic response to a precipitous decrease in spontaneous GABAergic IPSC frequency. This study establishes a likely neurochemical mechanism for the heart rate response to hypoxia and a link between prenatal nicotine exposure and an exaggerated bradycardia during hypoxia that may contribute to SIDS.
Abstract-The heart rate increases during inspiration and decreases during expiration. This respiratory sinus arrhythmia (RSA) occurs by modulation of premotor cardioinhibitory parasympathetic neuron (CPN) activity. However, RSA has not been fully characterized in rats, and despite the critical role of CPNs in the generation of RSA, little is known about the mechanisms that mediate this cardiorespiratory interaction. This study demonstrates that RSA in conscious rats is similar to that in other species. The mechanism of RSA was then examined in vitro. Rhythmic inspiratory-related activity was recorded from the hypoglossal rootlet of 700-to 800-m medullary sections. CPNs were identified by retrograde fluorescent labeling, and neurotransmission to CPNs was examined using patch-clamp electrophysiological techniques. During inspiratory bursts, the frequency of both spontaneous ␥-aminobutyric acidergic (GABAergic) and spontaneous glycinergic synaptic events in CPNs was significantly increased. Focal application of the nicotinic antagonist dihydro--erythroidine in an ␣ 4  2 -selective concentration (3 mol/L) abolished the respiratory-evoked increase in GABAergic frequency. In contrast, the increase in glycinergic frequency during inspiration was not altered by nicotinic antagonists. Prenatal nicotine exposure exaggerated the increase in GABAergic frequency during inspiration and enhanced GABAergic synaptic amplitude both between and during inspiratory events. Glycinergic synaptic frequency and amplitude were unchanged by prenatal nicotine exposure. This study establishes a neurochemical link between neurons essential for respiration and CPNs, reveals a functional role for endogenous acetylcholine release and the activation of nicotinic receptors in the generation of RSA, and demonstrates that this cardiorespiratory interaction is exaggerated in rats prenatally exposed to nicotine. Key Words: nucleus ambiguus Ⅲ vagal activity Ⅲ respiratory sinus arrhythmia Ⅲ prenatal nicotine Ⅲ sudden infant death syndrome T he heart rate increases during inspiration and decreases during the post-inspiration/expiration period. This respiratory-related change in heart rate, respiratory sinus arrhythmia (RSA), helps to match pulmonary blood flow to lung inflation and to maintain an appropriate diffusion gradient for oxygen in the lungs.
Propofol may vary heart rate by modulating GABAergic neurotransmission to cardiac parasympathetic neurons. At clinically relevant concentrations (> or =1.0 microm), propofol facilitated GABAergic responses in cardiac vagal neurons by increasing decay time, which would increase inhibition of cardioinhibitory cardiac vagal neurons and evoke an increase in heart rate. At higher supraclinical concentrations (> or =50 microm), propofol inhibits GABAergic neurotransmission to cardiac vagal neurons, which would evoke a decrease in heart rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.