Magnetic resonance imaging (MRI) has evolved into the gold standard for quantifying excess adiposity, but reliable, efficient use in longitudinal studies requires analysis of large numbers of images. The objective of this study is to develop and evaluate a segmentation method designed to identify cardiac, subcutaneous, and visceral adipose tissue (VAT) in Dixon MRI scans. The proposed method is evaluated using 10 scans from volunteer females 18-to 35-years old, with body mass indexes between 30 and 39.99 kg∕m 2 . Cross-sectional area (CSA) for cardiac adipose tissue (CAT), subcutaneous adipose tissue (SAT), and VAT, is compared to manually-traced results from three observers. Comparisons of CSA are made in 191 images for CAT, 394 images for SAT, and 50 images for VAT. The segmentation correlated well with respect to average observer CSA with Pearson correlation coefficient (R 2 ) values of 0.80 for CAT, 0.99 for SAT, and 0.99 for VAT. The proposed method provides accurate segmentation of CAT, SAT, and VAT and provides an option to support longitudinal studies of obesity intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.