To investigate the potential involvement of the nitric oxide (NO) pathway in colorectal carcinogenesis, we correlated the expression and the activity of inducible nitric oxide synthase (iNOS) with the degree of tumor angiogenesis in human colorectal cancer. Tumor samples and adjacent normal mucosa were obtained from 46 surgical specimens. Immunohistochemical expression of iNOS, vascular endothelial growth factor (VEGF), and CD31 was analyzed on paraffin-embedded tissue sections. iNOS activity and cyclic GMP levels were assessed by specific biochemical assays. iNOS protein expression was determined by Western blot analysis. iNOS and VEGF mRNA levels were evaluated using Northern blot analysis. Both iNOS and VEGF expressions correlated significantly with intratumor microvessel density (r(s) = 0.31, P = 0.02 and r(s) = 0.67, P < 0.0001, respectively). A significant correlation was also found between iNOS and VEGF expression (P = 0.001). iNOS activity and cyclic GMP production were significantly higher in the cancer specimens than in the normal mucosa (P < 0.0001 and P < 0.0001, respectively), as well as in metastatic tumors than in nonmetastatic ones (P = 0.002 and P = 0.04, respectively). Western and Northern blot analyses confirmed the up-regulation of the iNOS protein and gene in the tumor specimens as compared with normal mucosa. NO seems to play a role in colorectal cancer growth by promoting tumor angiogenesis.
1 Myocardial injury caused by ischaemia and reperfusion comes from multiple pathogenic events, including endothelial damage, neutrophil extravasation into tissue, mast cell activation, and peroxidation of cell membrane lipids. These events are followed by myocardial cell alterations resulting eventually in cell necrosis. An enhanced formation of reactive oxygen species is widely accepted as a stimulus for tissue destruction and cardiac failure. 2 In this study, we have investigated the cardioprotective e ects of M40403 in myocardial ischaemia-reperfusion injury. M40403 is a low molecular weight, synthetic manganese containing superoxide dismutase mimetic (SODm) that selectively removes superoxide anion. Ischaemia was induced in rat hearts in vivo by ligating the left anterior descending coronary artery. Thirty minutes after the induction of ischaemia, the ligature was removed and reperfusion allowed to occur for at least 60 min. M40403 (0.1 ± 1 mg kg 71 ) was given intravenously 15 min before ischaemia.3 The results obtained in this study showed that M40403 signi®cantly reduced the extent of myocardial damage, mast cell degranulation and the incidence of ventricular arrhythmias. Furthermore, M40403 signi®cantly attenuated, in a dose-dependent manner, neutrophil in®ltration in the myocardium as well as the associated induction of lipid peroxidation. Calcium overload seen post-reperfusion of the ischaemic myocardium was also reduced by M40403. 4 Immunohistochemical analysis for nitrotyrosine revealed a positive staining in cardiac tissue taken after reperfusion: this was attenuated by M40403. Moreover reperfused cardiac tissue sections showed positive staining for P-selectin and for anti-intercellular adhesion molecule (ICAM-1) in the vascular endothelial cells. M40403 treatment markedly reduced the intensity and degree of P-selectin and ICAM-1 in these tissues. No staining for nitrotyrosine, P-selectin or ICAM-1 was found in cardiac tissue taken at the end of the ischaemic period. 5 Overall, M40403 treatment reduced the morphological signs of myocardial cell injury and signi®cantly improved survival. 6 Taken together, these results clearly indicate that M40403 treatment exerts a protective e ect against ischaemia-reperfusion-induced myocardial injury, supporting a key role for superoxide anion in reperfusion injuries. This suggests that synthetic enzymes of SOD such as M40403, o er a novel therapeutic approach for the treatment of ischaemic heart disease where superoxide anion plays a dominant role. British Journal of Pharmacology (2002) 136, 905 ± 917
Carbon monoxide (CO) is a signaling gas produced intracellularly by heme oxygenase (HO) enzymes using heme as a substrate. During heme breakdown, HO-1 and HO-2 release CO, biliverdin, and Fe(2+). In this study, we investigated the effects of manipulation of the HO-1 system in an in vivo model of focal ischemia-reperfusion (FIR) in the rat heart. Male Wistar albino rats, under general anesthesia and artificial ventilation, underwent thoracotomy, the pericardium was opened, and a silk suture was placed around the left descending coronary artery; ischemia was induced by tightening the suture and was monitored for 30 min. Subsequently, the ligature was released to allow reperfusion lasting for 60 min. The first group of rats was sham operated and injected intraperitoneally (i.p.) with saline. The second group underwent FIR. The third group was treated ip 18 hr before FIR with hemin (4 mg/kg). The fourth group was pretreated ip 24 hr before FIR and 6 hr before hemin with zinc protoporphyrin IX (ZnPP-IX, 50 microg/kg). Specimens of the left ventricle were taken for determination of HO expression and activity, infarct size, malonyldialdehyde (MDA) production, and tissue calcium content. FIR led to a significant increase in the generation of MDA and notably raised tissue calcium levels. Induction of HO-1 by hemin significantly decreased infarct size, incidence of reperfusion arrhythmias, MDA generation, and calcium overload induced by FIR. These effects were prevented by the HO-1 inhibitor ZnPP-IX. The present experiments show that the concerted actions of CO, iron, and biliverdin/bilirubin modulate the FIR-induced myocardial injury.
1 Haeme oxygenase (HO) is an enzyme mainly localized in the smooth endoplasmic reticulum and involved in haeme degradation and in the generation of carbon monoxide (CO). Here we investigate (1) whether the inducible isoform of HO (HO-1) is expressed in the isolated heart of the guinea-pig and (2) the functional signi®cance of HO-1 on the response to antigen in isolated hearts taken from actively sensitized guinea-pigs. 2 Both the HO-1 expression and activity are consistently increased in hearts from guinea-pigs pretreated with hemin, an HO-1 inducer (4 mg kg 71 i.p., 18 h before antigen challenge). The administration of the HO-1 inhibitor zinc-protoporphyrin IX (ZnPP-IX, 50 mmol kg 71 , i.p., 6 h before hemin) abolished the increase of both the HO-1 expression and activity. 3 In vitro challenge with the speci®c antigen of hearts from actively sensitized animals evokes a positive inotropic and chronotropic eect, a coronary constriction followed by dilation and an increase in the amount of histamine in the perfusates. In hearts from hemin-pretreated animals, antigen challenge did not modify the heart rate and the force of contraction; the coronary out¯ow was signi®cantly increased and a diminution of the release of histamine was observed. The patterns of cardiac anaphylaxis were fully restored in hearts from animals treated with ZnPP-IX 6 h before hemin. 4 In isolated hearts perfused with a Tyrode solution gassed with 100% CO for 5 min and successively reoxygenated, the response to antigen was similar to that observed in hearts from hemin-pretreated animals. 5 Pretreatment with hemin or the exposure to exogenous CO were linked to an increase in cardiac cyclic GMP levels and to a decrease of tissue Ca 2+ levels. 6 The study demonstrates that overexpression of HO-1 inhibits cardiac anaphylaxis through the generation of CO which, in turn, decreases the release of histamine through a cyclic GMP-and Ca 2+ -dependent mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.