To investigate the potential involvement of the nitric oxide (NO) pathway in colorectal carcinogenesis, we correlated the expression and the activity of inducible nitric oxide synthase (iNOS) with the degree of tumor angiogenesis in human colorectal cancer. Tumor samples and adjacent normal mucosa were obtained from 46 surgical specimens. Immunohistochemical expression of iNOS, vascular endothelial growth factor (VEGF), and CD31 was analyzed on paraffin-embedded tissue sections. iNOS activity and cyclic GMP levels were assessed by specific biochemical assays. iNOS protein expression was determined by Western blot analysis. iNOS and VEGF mRNA levels were evaluated using Northern blot analysis. Both iNOS and VEGF expressions correlated significantly with intratumor microvessel density (r(s) = 0.31, P = 0.02 and r(s) = 0.67, P < 0.0001, respectively). A significant correlation was also found between iNOS and VEGF expression (P = 0.001). iNOS activity and cyclic GMP production were significantly higher in the cancer specimens than in the normal mucosa (P < 0.0001 and P < 0.0001, respectively), as well as in metastatic tumors than in nonmetastatic ones (P = 0.002 and P = 0.04, respectively). Western and Northern blot analyses confirmed the up-regulation of the iNOS protein and gene in the tumor specimens as compared with normal mucosa. NO seems to play a role in colorectal cancer growth by promoting tumor angiogenesis.
Purpose: Up-regulation of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) enzymes has been reported in colorectal cancer. We aimed at evaluating the possible interaction between the nitric oxide and COX-2 pathways, and its effect on promoting tumor angiogenesis.Experimental Design: Expression of iNOS, COX-2, vascular endothelial growth factor (VEGF), and CD31 was analyzed in tumor samples and corresponding normal mucosa obtained from 46 surgical specimens. We also evaluated iNOS activity, prostaglandin E 2 (PGE 2 ), cyclic GMP and cyclic AMP production in the same specimens. Nitrite/nitrate levels, and PGE 2 and VEGF production were assessed in HCT116 and HT29 colon cancer cell lines after induction and selective inhibition of the two enzyme pathways.Results: A significant correlation was found between iNOS and COX-2 immunohistochemical expression. PGE 2 production significantly correlated with iNOS activity and cGMP levels. A significant correlation was also found among PGE 2 production, microvessel density, and VEGF expression. Coinduction of both iNOS and COX-2 activities occurred after lipopolysaccharide (LPS) and epidermal growth factor (EGF) treatment in HCT116 and HT29 cells. Inhibition of iNOS by 1400W significantly reduced both LPS-and EGF-induced PGE 2 production. Treatment with LPS, EGF, and arachidonic acid significantly increased VEGF production in the iNOS-negative/COX-2-positive HT29 cells. This effect was completely reversed by treatment with the selective COX-2 inhibitor celecoxib.Conclusions: Our data showed a prominent role of nitric oxide in stimulating COX-2 activity in colorectal cancer. This interaction is likely to produce a cooperative effect in promoting angiogenesis through PGE 2 -mediated increase in VEGF production.
The presence of multiple drug resistance (MDR1) and angiogenic phenotypes negatively affect patients' prognosis with cancer even when treated with drugs that are not transported by the MDR1 gene product. It is possible to suggest a link between the MDR1 and angiogenic phenotypes. Because prostaglandins (PGs) and nitric oxide (NO) have been proposed to be involved in angiogenesis in vivo, the production of PGs and NO and the behavior of inducible NO synthase (iNOS), cyclooxygenase 1 (COX-1), and inducible cyclooxygenase (COX-2) were studied in parental drug-sensitive (P5) liver cancer cell lines and in P5-derived MDR1 cells P1(0.5). Immunohistochemical evaluation, Northern and Western blot analysis of COX-2 and iNOS, and assessment of cell proliferation were performed in basal conditions and after the exposure to stimulants or to specific inhibitors of COX-2 and iNOS. The messenger RNA and protein levels of COX-2 and iNOS were in basal conditions higher in P1(0.5) cells than the parental P5 cells. The exposure to lipopolysaccharide (LPS) or epidermal growth factor (EGF) determined an increase of PG and NO production in both cell lines and this increase was strongly reduced by COX-2 inhibitors such as celecoxib (CLX) and nimesulide (NIME). The inhibition of NO production by COX-2 inhibitors suggests cross-talk between COX-2 and iNOS pathways. CLX and NIME also inhibited cell proliferation, but only in MDR1 cells. A specific inhibitor of iNOS, N 6 -(1-iminoethyl)-L-lysine, had only a mild effect on cell proliferation in both cell lines. In conclusion, these data support the hypothesis that the MDR1 and angiogenic phenotypes are linked to each other in human liver cancer cell lines. (HEPATOLOGY 2002;35:843-852.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.