Neuroinflammation is considered a chronic activation of the immune response in the central nervous system (CNS) in response to different injuries. This brain immune activation results in various events: circulating immune cells infiltrate the CNS; resident cells are activated; and pro-inflammatory mediators produced and released induce neuroinflammatory brain disease. The effect of immune diffusible mediators on synaptic plasticity might result in CNS dysfunction during neuroinflammatory brain diseases. The CNS dysfunction may induce several human pathological conditions associated with both cognitive impairment and a variable degree of neuroinflammation. Furthermore, age has a powerful effect on enhanced susceptibility to neurodegenerative diseases and age-dependent enhanced neuroinflammatory processes may play an important role in toxin generation that causes death or dysfunction of neurons in neurodegenerative diseases This review will address current understanding of the relationship between ageing, neuroinflammation and neurodegenerative disease by focusing on the principal mechanisms by which the immune system influences the brain plastic phenomena. Also, the present review considers the principal human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis and psychiatric disorders caused by aging and neuroinflammation.
The effect of the biologically active prenylated chalcone and potential anticancer agent xanthohumol (1) has been investigated on apoptosis of the T98G human malignant glioblastoma cell line. Compound 1 decreased the viability of T98G cells by induction of apoptosis in a time- and concentration-dependent manner. Apoptosis induced by 1 was associated with activation of caspase-3, caspase-9, and PARP cleavage and was mediated by the mitochondrial pathway, as exemplified by mitochondrial depolarization, cytochrome c release, and downregulation of the antiapoptotic Bcl-2 protein. Xanthohumol induced intracellular reactive oxygen species (ROS), an effect that was reduced by pretreatment with the antioxidant N-acetyl-L-cysteine (NAC). Intracellular ROS production appeared essential for the activation of the mitochondrial pathway and induction of apoptosis after exposure to 1. Oxidative stress due to treatment with 1 was associated with MAPK activation, as determined by ERK1/2 and p38 phosphorylation. Phosphorylation of ERK1/2 and p38 was attenuated using NAC to inhibit ROS production. After treatment with 1, ROS provided a specific environment that resulted in MAPK-induced cell death, with this effect reduced by the ERK1/2 specific inhibitor PD98059 and partially inhibited by the p38 inhibitor SB203580. These findings suggest that xanthohumol (1) is a potential chemotherapeutic agent for the treatment of glioblastoma multiforme.
Background: The neuroblastoma oncogene MYCN and the PRC2 members EZH2 and SUZ12 are regulators of gene transcription.Results: MYCN and PRC2 form a repressive complex on the promoter of the tumor suppressor gene CLU.Conclusion: PRC2 members are recruited by MYCN to repress gene expression and induce tumorigenesis.Significance: Reactivation of MYCN-PRC2-repressed genes by epigenetic drugs could be of clinical value in neuroblastoma.
Annexin A1 (ANXA1) is the first characterized member of the annexins superfamily. It binds the cellular membrane phospholipids in Ca(2+) regulated manner. Annexin A1 has been found in several tissues and many physiological roles as hormones secretion, vesiculation, inflammatory response, apoptosis and differentiation have been shown. Its subcellular localization and binding with many partner proteins are altered accordingly with its physiological role. The Annexin A1 membrane localization is crucial for binding to receptors, suggesting a paracrine and juxtacrine extracellular action. Annexin A1 is subjected to several post-translational modifications. In particular the protein is phosphorylated on several residues both on the N-terminal functional domain and on the C-terminus core. Different kinases have been identified as responsible for the phosphorylation status of selective residues. The specific change in the phosphorylation status on the different sites alters ANXA1 localization, binding properties and functions. This review shows the physiological relevance of the ANXA1 phosphorylation leading to the conclusion that numerous and different roles of Annexin A1 could be associated with different phosphorylations to alter not only intracellular localization and bindings to its partners but also the extracellular receptor interactions.
Background: Neuroblastic tumors are often addicted to the MYCN protooncogene.Results: Using a genome wide shRNA screen, we have identified key MYCN synthetic lethal genes.Conclusion: Chemical inhibition of the newly identified MYCN synthetic lethal genes selectively kills MYCN-amplified cell lines.Significance: Decoding the MYCN gene network will help to develop drugs for the treatment of neuroblastic tumors with activated MYCN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.