Background The global rate of intensive care unit (ICU) admission during the COVID-19 pandemic varies within countries and is among the main challenges for health care systems worldwide. Conflicting results have been reported about the response to coronavirus infection and COVID-19 outcomes in men and women. Understanding predictors of intensive care unit admission might be of help for future planning and management of the disease. Methods and findings We designed a cross-sectional observational multicenter nationwide survey in Italy to understand gender-related clinical predictors of ICU admission in patients with COVID-19. We
A simple estimate of low myocardial mechano-energetic efficiency is associated with altered metabolic profile, LVH, concentric left ventricular geometry, and diastolic dysfunction and predicts cardiovascular end-points, independently of age, sex, LVH antihypertensive therapy, and cardiovascular risk factors.
Epidemiological studies have documented a high incidence of diabetes in hypertensive patients.Insulin resistance is defined as a less than expected biologic response to a given concentration of the hormone and plays a pivotal role in the pathogenesis of diabetes. However, over the last decades, it became evident that insulin resistance is not merely a metabolic abnormality, but is a complex and multifaceted syndrome that can also affect blood pressure homeostasis. The dysregulation of neurohumoral and neuro-immune systems is involved in the pathophysiology of both insulin resistance and hypertension. These mechanisms induce a chronic low grade of inflammation that interferes with insulin signalling transduction. Molecular abnormalities associated with insulin resistance include the defects of insulin receptor structure, number, binding affinity, and/or signalling capacity. For instance, hyperglycaemia impairs insulin signalling through the generation of reactive oxygen species, which abrogate insulin-induced tyrosine autophosphorylation of the insulin receptor. Additional mechanisms have been described as responsible for the inhibition of insulin signalling, including proteasome-mediated degradation of insulin receptor substrate 1/2, phosphatase-mediated dephosphorylation and kinase-mediated serine/threonine phosphorylation of both insulin receptor and insulin receptor substrates. Insulin resistance plays a key role also in the pathogenesis and progression of hypertension-induced target organ damage, like left ventricular hypertrophy, atherosclerosis and chronic kidney disease. Altogether these abnormalities significantly contribute to the increase the risk of developing type 2 diabetes.
Background Myocardial energetic efficiency (MEE), is a strong predictor of CV events in hypertensive patient and is reduced in patients with diabetes and metabolic syndrome. We hypothesized that severity of insulin resistance (by HOMA-IR) negatively influences MEE in participants from the Strong Heart Study (SHS). Methods We selected non-diabetic participants (n = 3128, 47 ± 17 years, 1807 women, 1447 obese, 870 hypertensive) free of cardiovascular (CV) disease, by merging two cohorts (Strong Heart Study and Strong Heart Family Study, age range 18–93). MEE was estimated as stroke work (SW = systolic blood pressure [SBP] × stroke volume [SV])/“double product” of SBP × heart rate (HR), as an estimate of O 2 consumption, which can be simplified as SV/HR ratio and expressed in ml/sec. Due to the strong correlation, MEE was normalized by left ventricular (LV) mass (MEEi). Results Linear trend analyses showed that with increasing quartiles of HOMA-IR patients were older, more likely to be women, obese and hypertensive, with a trend toward a worse lipid profile (all p for trend < 0.001), progressive increase in LV mass index, stroke index and cardiac index and decline of wall mechanics (all p < 0.0001). In multivariable regression, after adjusting for confounders, and including a kinship coefficient to correct for relatedness, MEEi was negatively associated with HOMA-IR, independently of significant associations with age, sex, blood pressure, lipid profile and central obesity (all p < 0.0001). Conclusions Severity of insulin resistance has significant and independent negative impact on myocardial mechano-energetic efficiency in nondiabetic individual from a population study of American Indians. Trial registration number NCT00005134, Name of registry: Strong Heart Study, URL of registry: https://clinicaltrials.gov/ct2/show/NCT00005134 , Date of registration: May 25, 2000, Date of enrolment of the first participant to the trial: September 1988 Electronic supplementary material The online version of this article (10.1186/s12933-019-0862-9) contains supplementary material, which is available to authorized users.
An estimation of myocardial mechano-energetic efficiency (MEE) per unit of left ventricular (LV) mass (MEEi) can significantly predict composite cardiovascular (CV) events in treated hypertensive patients with normal ejection fraction (EF), after adjustment for LV hypertrophy (LVH). We have tested whether MEEi predicts incident heart failure (HF), after adjustment for LVH, in the population-based cohort of a "Strong Heart Study" (SHS) with normal EF. We included 1,912 SHS participants (age 59 ± 8 years; 64% women) with preserved EF (≥50%) and without prevalent CV disease. MEE was estimated as the ratio of stroke work to the "double product" of heart rate times systolic blood pressure. MEEi was calculated as MEE/LV mass, and analyzed in quartiles. During a follow-up study of 9.2 ± 2.3 years, 126 participants developed HF (7%). HF was preceded by acute myocardial infarction (AMI) in 94 participants. A Kaplan-Meier plot, in quartiles of MEEi, demonstrated significant differences, substantially due to the deviation of the lowest quartile (p < 0.0001). Using AMI as a competing risk event, sequential models of Cox regression for incident HF (including significant confounders), demonstrated that low MEEi predicted incident HF not due to AMI (p = 0.026), after adjustment for significant effect of age, LVH, prolonged LV relaxation, diabetes, and smoking habits with negligible effects for sex, hypertension, antihypertensive therapy, obesity, and hyperlipemia. Low LV mechano-energetic efficiency per unit of LVM, is a predictor of incident, non-AMI related, HF in subjects with initially normal EF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.