As the volume and complexity of distributed online work increases, the collaboration among people who have never worked together in the past is becoming increasingly necessary. Recent research has proposed algorithms to maximize the performance of such teams by grouping workers according to a set of predefined decision criteria. This approach micro-manages workers, who have no say in the team formation process. Depriving users of control over who they will work with stifles creativity, causes psychological discomfort and results in less-than-optimal collaboration results. In this work, we propose an alternative model, called Self-Organizing Teams (SOTs), which relies on the crowd of online workers itself to organize into effective teams. Supported but not guided by an algorithm, SOTs are a new human-centered computational structure, which enables participants to control, correct and guide the output of their collaboration as a collective. Experimental results, comparing SOTs to two benchmarks that do not offer user agency over the collaboration, reveal that participants in the SOTs condition produce results of higher quality and report higher teamwork satisfaction. We also find that, similarly to machine learning-based self-organization, human SOTs exhibit emergent collective properties, including the presence of an objective function and the tendency to form more distinct clusters of compatible teammates.
As the volume and complexity of distributed online work increases, collaboration among people who have never worked together in the past is becoming increasingly necessary. Recent research has proposed algorithms to maximize the performance of online collaborations by grouping workers in a top-down fashion and according to a set of predefined decision criteria. This approach often means that workers have little say in the collaboration formation process. Depriving users of control over whom they will work with can stifle creativity and initiative-taking, increase psychological discomfort, and, overall, result in less-than-optimal collaboration results—especially when the task concerned is open-ended, creative, and complex. In this work, we propose an alternative model, called Self-Organizing Pairs (SOPs), which relies on the crowd of online workers themselves to organize into effective work dyads. Supported but not guided by an algorithm, SOPs are a new human-centered computational structure, which enables participants to control, correct, and guide the output of their collaboration as a collective. Experimental results, comparing SOPs to two benchmarks that do not allow user agency, and on an iterative task of fictional story writing, reveal that participants in the SOPs condition produce creative outcomes of higher quality, and report higher satisfaction with their collaboration. Finally, we find that similarly to machine learning-based self-organization, human SOPs exhibit emergent collective properties, including the presence of an objective function and the tendency to form more distinct clusters of compatible collaborators.
Online crowds have the potential to do more complex work in teams, rather than as individuals. Team formation algorithms typically maximize some notion of global utility of team output by allocating people to teams or tasks. However, decisions made by these algorithms do not consider the decisions or preferences of the people themselves. This paper explores a complementary strategy, which relies on the crowd itself to self-organize into effective teams. Our preliminary results show that users perceive the ability to choose their teammate extremely useful in a crowdsourcing setting. We also find that self-organisation makes users feel more productive, creative and responsible for their work product.
Following successful crowd ideation contests, organizations in search of the "next big thing" are left with hundreds of ideas. Expert-based idea filtering is lengthy and costly; therefore, crowd-based strategies are often employed. Unfortunately, these strategies typically (1) do not separate the mediocre from the excellent, and (2) direct all the attention to certain idea concepts, while others starve. We introduce DBLemons - a crowd-based idea filtering strategy that addresses these issues by (1) asking voters to identify the worst rather than the best ideas using a "bag of lemons'' voting approach, and (2) by exposing voters to a wider idea spectrum, thanks to a dynamic diversity-based ranking system balancing idea quality and coverage. We compare DBLemons against two state-of-the-art idea filtering strategies in a real-world setting. Results show that DBLemons is more accurate, less time-consuming, and reduces the idea space in half while still retaining 94% of the top ideas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.