Background Artificial intelligence (AI) has the potential to transform our healthcare systems significantly. New AI technologies based on machine learning approaches should play a key role in clinical decision-making in the future. However, their implementation in health care settings remains limited, mostly due to a lack of robust validation procedures. There is a need to develop reliable assessment frameworks for the clinical validation of AI. We present here an approach for assessing AI for predicting treatment response in triple-negative breast cancer (TNBC), using real-world data and molecular -omics data from clinical data warehouses and biobanks. Methods The European “ITFoC (Information Technology for the Future Of Cancer)” consortium designed a framework for the clinical validation of AI technologies for predicting treatment response in oncology. Results This framework is based on seven key steps specifying: (1) the intended use of AI, (2) the target population, (3) the timing of AI evaluation, (4) the datasets used for evaluation, (5) the procedures used for ensuring data safety (including data quality, privacy and security), (6) the metrics used for measuring performance, and (7) the procedures used to ensure that the AI is explainable. This framework forms the basis of a validation platform that we are building for the “ITFoC Challenge”. This community-wide competition will make it possible to assess and compare AI algorithms for predicting the response to TNBC treatments with external real-world datasets. Conclusions The predictive performance and safety of AI technologies must be assessed in a robust, unbiased and transparent manner before their implementation in healthcare settings. We believe that the consideration of the ITFoC consortium will contribute to the safe transfer and implementation of AI in clinical settings, in the context of precision oncology and personalized care.
Cardiovascular disease (CVD) is the number one cause of death worldwide, and coronary artery disease (CAD) is the most prevalent CVD, accounting for 42% of these deaths. In view of the limitations of the anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has been introduced as a functional diagnostic index. Herein, we evaluate the feasibility of using deep neural networks (DNN) in an ensemble approach to predict the invasively measured FFR from raw anatomical information that is extracted from optical coherence tomography (OCT). We evaluate the performance of various DNN architectures under different formulations: regression, classification—standard, and few-shot learning (FSL) on a dataset containing 102 intermediate lesions from 80 patients. The FSL approach that is based on a convolutional neural network leads to slightly better results compared to the standard classification: the per-lesion accuracy, sensitivity, and specificity were 77.5%, 72.9%, and 81.5%, respectively. However, since the 95% confidence intervals overlap, the differences are statistically not significant. The main findings of this study can be summarized as follows: (1) Deep-learning (DL)-based FFR prediction from reduced-order raw anatomical data is feasible in intermediate coronary artery lesions; (2) DL-based FFR prediction provides superior diagnostic performance compared to baseline approaches that are based on minimal lumen diameter and percentage diameter stenosis; and (3) the FFR prediction performance increases quasi-linearly with the dataset size, indicating that a larger train dataset will likely lead to superior diagnostic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.