Cardiovascular disease (CVD) is the number one cause of death worldwide, and coronary artery disease (CAD) is the most prevalent CVD, accounting for 42% of these deaths. In view of the limitations of the anatomical evaluation of CAD, Fractional Flow Reserve (FFR) has been introduced as a functional diagnostic index. Herein, we evaluate the feasibility of using deep neural networks (DNN) in an ensemble approach to predict the invasively measured FFR from raw anatomical information that is extracted from optical coherence tomography (OCT). We evaluate the performance of various DNN architectures under different formulations: regression, classification—standard, and few-shot learning (FSL) on a dataset containing 102 intermediate lesions from 80 patients. The FSL approach that is based on a convolutional neural network leads to slightly better results compared to the standard classification: the per-lesion accuracy, sensitivity, and specificity were 77.5%, 72.9%, and 81.5%, respectively. However, since the 95% confidence intervals overlap, the differences are statistically not significant. The main findings of this study can be summarized as follows: (1) Deep-learning (DL)-based FFR prediction from reduced-order raw anatomical data is feasible in intermediate coronary artery lesions; (2) DL-based FFR prediction provides superior diagnostic performance compared to baseline approaches that are based on minimal lumen diameter and percentage diameter stenosis; and (3) the FFR prediction performance increases quasi-linearly with the dataset size, indicating that a larger train dataset will likely lead to superior diagnostic performance.
Background: Visual estimation (VE) of coronary stenoses is the first step during invasive coronary angiography. The aim of this study was to evaluate the accuracy of VE together with invasive functional assessment (IFA) in defining the functional significance (FS) of coronary stenoses based on the opinion of multiple operators. Methods: Fourteen independent operators visually evaluated 133 coronary lesions which had a previous FFR measurement, indicating the degree of stenosis (DS), FS and IFA intention. We determined the accuracy of FS prediction using several scenarios combining individual and group decision, considering IFA as deemed necessary by the operator or only in intermediate lesions. Results: The accuracy of VE in predicting FS was largely variable between operators (average 66.1%); it improved significantly when IFA was used either as per operator’s opinion (86.3%; p < 0.0001) or only in intermediate DS (82.9; p < 0.0001). There was no significant difference between using IFA per observer’s opinion or only in intermediate DS lesions (p = 0.166). The poorest accuracy of VE for FS was obtained in intermediate DS lesions (59.1%). Conclusions: There are significant inter-observer differences in reporting the degree of DS, while the accuracy of VE prediction of FS is also largely dependent on the operator, and the worst performance is obtained in the evaluation of intermediate DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.