Herein we demonstrate the synthesis of ammonia via atmospheric dielectric barrier discharge plasma discharge over silica. We evaluated the performance of three structural different silicas: non-porous silica, fumed-silica and mesoporous SBA-15 silica. The mesoporous SBA-15 sample resulted in an ammonia synthesis rate per gram of catalyst at least three times higher than that of the non-porous and fumed silica when employing a hydrogen rich gas feed. The hierarchical ordered pore size in the mesoporous range of SBA-15 allowed us to observe experimentally, the pore size effect in the plasma discharge. Specifically, the ammonia production is enhanced by the presence of mesopores that can effectively enable the discharge diffusion into the pore as predicted by theoretical calculations. The importance of the porous structure was confirmed by optical emission spectra which indicates a similarity on the relative intensity on the main plasma activated species in the gas phase such as N2 +, NH and H α for the three silicas employed in this work i.e. non-porous, fumed and mesoporous (SBA-15). However, the remarkable ammonia production when employing the SBA-15 shows that despite the similarities in the gas phase the main differences might be attributed to the diffusion of the plasma discharge into the pores.
Metal−organic frameworks (MOFs) are highly tunable materials with potential for use as porous media in non-thermal adsorption or membrane-based separations. However, many separations target molecules with sub-angstrom differences in size, requiring precise control over the pore size. Herein, we demonstrate that this precise control can be achieved by installing a three-dimensional linker in an MOF with onedimensional channels. Specifically, we synthesized single crystals and bulk powder of NU-2002, an isostructural framework to MIL-53 with bicyclo[1.1.1]pentane-1,3-dicarboxylic acid as the organic linker component. Using variable-temperature X-ray diffraction studies, we show that increasing linker dimensionality limits structural breathing relative to MIL-53. Furthermore, single-component adsorption isotherms demonstrate the efficacy of this material for separating hexane isomers based on the different sizes and shapes of these isomers.
Metal-organic frameworks (MOFs) have been proposed as a promising material for non-thermal chemical separations owing to their high structural diversity and tunability. Here, we report the synthesis of a zinc-based MOF containing a three-dimensional (3D) linker, bicyclo[2.2.2]octane-1,4-dicarboxylic acid, with high thermal stability towards the separation of hexane isomers. The incorporation of the 3D linker enhances the structural stability and provides well-defined pore apertures/channels with sub-Ångstrom precision. This precision allowed for the separation of similarly sized hexane isomers based on subtle differences in their kinetic diameters. Multi-component liquid phase batch experiments confirmed the separation of hexanes mixture into linear, monobranched, and dibranched isomers. This work represents a significant milestone in the construction of stable Zn-based MOFs and the incorporation of 3D linkers as a potential solution to challenging separations.
Metal-organic frameworks (MOFs) are a class of porous materials with high surface areas, which are acquiring rapid attention on an exponential basis. A significant characteristic of MOFs is their ability to act as adsorbents to selectively separate component mixtures of similar size, thereby addressing the technological need for an alternative approach to conventional distillation methods. Recently, MOFs comprising a 3-Dimensional (3D) linker have shown outstanding capabilities for difficult separations compared to the parent 2-Dimensional (2D) analogue. 3D-linkers with a polycyclic core are underrepresented in the MOF database due to the widespread preferred use of 2D-linkers and the misconceived high-cost of 3D linkers. We summarize the recent research of 3D-linker MOFs and highlight their beneficial employment for selective gas and hydrocarbon adsorption and separation. Furthermore, we outline forecasts in this area to create a platform for widespread adoption of 3D-linkers in MOF synthesis.
For the production of sustainable biofuels from lipid biomass it is essential to develop non-noble metal catalysts with high conversion and selectivity under inert gas atmospheres. Herein, we report a novel cobalt-based catalyst supported on zeolite NaX via ion-exchange synthesis. The resultant bifunctional cobalt-based NaX zeolite catalyst displayed high conversion of stearic acid to liquid fuels. In addition, the effect of reaction temperature and catalyst loading was studied to evaluate the order of reaction and activation energy. Decarboxylation and decarbonylation were the dominant deoxygenation pathways. Stearic acid was successfully deoxygenated in N2 atmospheres using Co/NaX catalysts with a conversion as high as 83.7% and a yield to heptadecane up to ~28%. Furthermore, we demonstrate that higher reaction temperatures resulted in competing pathways of decarboxylation and decarbonylation. Finally, the fresh and recycled catalysts were characterized showing modest recyclability with a ~12.5% loss in catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.