In this study, amorphous carbonaceous nanoparticles were prepared by a simple hydrothermal process using glucose as precursor. The nearly perfect spherical particles (beads) with the dimensions in the range of 10-500 nm were obtained depending on the main process parameters (precursor concentration, temperature, and time). The particles size, surface morphology, structure, and composition have been examined by TEM, SEM, X-ray diffraction, XPS, FTIR and Raman spectroscopy. These amorphous carbonaceous nanobeads (a-CNBs) have been found nontoxic in vitro with a variety of cultured cell lines. The size-dependent effect of a-CNBs addition on cell function has been observed. For example, a-CNBs can, in some cases, substantially increase interleukin-12 (IL-12) production by bone marrow dendritic cells. It has been further demonstrated that a-CNBs can be modified with fluorescent dye molecules or loaded with anti-cancer drugs for bioimaging or therapeutic purposes, respectively. The results of these tests and the strategies for the particle preparation and functionalization for biomedical applications have been discussed.
Carbon nanostructures, e.g., nanotubes, fullerenes, carbon blacks, etc., are being extensively explored for numerous biomedical applications. The most of such studies, however, deal with carbon nanotubes, and comparatively less is known on the biomedical potential of other nanosize carbon particles. In the present work, carbon and metal/carbon core/shell spherical nanoparticles have been prepared using the decomposition of monosaccharide-based compositions under hydrothermal conditions with or without the presence of metal seed particles. The effects of different process conditions on the particle size, structure, and composition have been examined using TEM, XRD, UV-Vis, FTIR and Raman spectroscopies. The nearly perfect spherical particles with the dimensions in the range of 20 – 100 nm have been obtained depending on the process parameters such as precursor concentration, presence of seed particles and polymeric additives, process temperature and time. The particles prepared with 5 – 20 nm gold seeds clearly showed the core/shell structure with the thickness of carbon shell in the range of 10 – 50 nm. The FTIR experiments have indicated a strong effect of the processing conditions on the chemical activity of nanoparticle surfaces in the attachment of the additional surface functional groups and organic molecules. It has been found that the both hydrothermally prepared carbon and metal/carbon core/shell nanoparticles possess very good dispersibility and stability in the both water and simulated body fluids in the most of experiments. The particles have been successfully functionalized with several molecules such as polyethyleneglucol and biotin. Selected samples of well-dispersed carbon nanospheres with different concentrations have been tested for their interaction with several cultured cell lines including epidermal keratinocytes, fibroblasts, and dog macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.