Summary Bortezomib therapy has proven successful for the treatment of relapsed/refractory, relapsed and newly diagnosed multiple myeloma (MM); however, dose-limiting toxicities and the development of resistance limit its long-term utility. Here we show that P5091 is an inhibitor of deubiquitylating enzyme USP7, which induces apoptosis in MM cells resistant to conventional and bortezomib therapies. Biochemical and genetic studies show that blockade of HDM2 and p21 abrogates P5091-induced cytotoxicity. In animal tumor model studies, P5091 is well tolerated, inhibits tumor growth, and prolongs survival. Combining P5091 with lenalidomide, HDAC inhibitor SAHA, or dexamethasone triggers synergistic anti-MM activity. Our preclinical study therefore supports clinical evaluation of USP7 inhibitor, alone or in combination, as a potential MM therapy.
Converting lead compounds into drug candidates is a crucial step in drug development, requiring early assessment of potency, selectivity, and off-target effects. We have utilized activity-based chemical proteomics to determine the potency and selectivity of deubiquitylating enzyme (DUB) inhibitors in cell culture models. Importantly, we characterized the small molecule PR-619 as a broad-range DUB inhibitor, and P22077 as a USP7 inhibitor with potential for further development as a chemotherapeutic agent in cancer therapy. A striking accumulation of polyubiquitylated proteins was observed after both selective and general inhibition of cellular DUB activity without direct impairment of proteasomal proteolysis. The repertoire of ubiquitylated substrates was analyzed by tandem mass spectrometry, identifying distinct subsets for general or specific inhibition of DUBs. This enabled identification of previously unknown functional links between USP7 and enzymes involved in DNA repair.
Conjugation or deconjugation of ubiquitin (Ub) or ubiquitin-like proteins (UBLs) to or from cellular proteins is a multifaceted and universal means of regulating cellular physiology, controlling the lifetime, localization, and activity of many critical proteins. Deconjugation of Ub or UBL from proteins is performed by a class of proteases called isopeptidases. Herein is described a readily quantifiable novel isopeptidase assay platform consisting of Ub or UBL fused to the reporter enzyme phospholipase A 2 (PLA 2 ). Isopeptidase activity releases PLA 2 , which cleaves its substrate, generating a signal that is linear with deubiquitylase (DUB) concentration and is able to discriminate DUB, deSUMOylase, deNEDDylase, and deISGylase activities. The power and sensitivity of the UBL-PLA 2 assay are demonstrated by its ability to differentiate the contrasting deISGylase and DUB activities of two coronavirus proteases: severe acute respiratory syndrome papain-like protease (SARS-CoV PLpro) and NL63 CoV papain-like protease 2 (PLP2). Furthermore, direct comparisons with the current Ub-7-amino-4-methylcoumarin (Ub-AMC) assay demonstrated that the Ub-PLA 2 assay is an effective tool for characterizing modulators of isopeptidase activity. This observation was expanded by profiling the inhibitory activity of the nonselective isopeptidase inhibitor NSC 632839 against DUBs and deSUMOylases. Taken together, these studies illustrate the utility of the reporter-based approach to measuring isopeptidase activity.Keywords: ubiquitin; deubiquitylase; deSUMOylase; deISGylase; deNEDDylase Supplemental material: see www.proteinscience.orgThe content of most proteins in the cell is governed by the ubiquitin-proteasomal pathway (Hershko and Ciechanover 1998). Ubiquitin (Ub) and ubiquitin-like proteins (UBLs) such as SUMO, NEDD8, and ISG15 regulate proteins by additional mechanisms, for example, intracellular compartmentation, signal transduction, and the regulation of some E3 ligases (Welchman et al. 2005). Degradation of a targeted protein by the ubiquitin system typically involves the concerted action of two to three enzymes (for review, see Hershko and Ciechanover 1998). Typically, polyubiquitylated polypeptides are delivered to the proteasome complex, which hydrolyzes the polypeptide into short oligopeptides and releases free ubiquitin, which is recycled. The process is reversible; ubiquitin, as well as other
Phosphoenolpyruvate carboxylase (PEPC) is a tightly regulated enzyme situated at the core of plant C-metabolism. Although its anaplerotic role and control by allosteric effectors, reversible phosphorylation, and oligomerization have been well documented in the endosperm of developing castor oil seeds (COS), relatively little is known about PEPC in germinating COS. The initial phase of COS germination was accompanied by elevated PEPC activity and accumulation of comparable amounts of pre-existing 107-kDa and inducible 110-kDa immunoreactive PEPC polypeptides (p107 and p110, respectively). A 440-kDa PEPC heterotetramer composed of an equivalent ratio of nonphosphorylated p110 and p107 subunits was purified from germinated COS. N-terminal microsequencing, mass spectrometry, and immunoblotting revealed that both subunits arose from the same gene (RcPpc3) that encodes the p107 subunit of a phosphorylated 410-kDa PEPC homotetramer in developing COS but that p110 is a monoubiquitinated form of p107. Tandem mass spectrometry sequencing of a diglycinated tryptic peptide identified Lys-628 as p110's monoubiquitination site. This residue is conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Incubation with a human deubiquitinating enzyme (USP-2 core) converted the p110:p107 PEPC heterotetramer into a p107 homotetramer while significantly reducing the enzyme's K m (PEP) and sensitivity to allosteric activators (hexose-Ps, glycerol-3-P) and inhibitors (malate, aspartate). Monoubiquitination is a non-destructive and reversible post-translational modification involved in the control of diverse processes such as transcription, endocytosis, and signal transduction. The current study demonstrates that tissue-specific monoubiquitination of a metabolic enzyme can also occur and that this modification influences its kinetic and regulatory properties.
Wnt proteins control multiple cell behaviors during development and tissue homeostasis. However, pathological activation of Wnt signaling is the underlying cause of various human diseases. The ubiquitinproteasome system plays important regulatory functions within the Wnt pathway by regulating the activity of several of its core components. Hence, multiple E3 ubiquitin ligases have been implicated in its regulation. Less is known, however, about the role of ubiquitin-specific proteases in Wnt signaling. Analysis of purified axin-containing protein complexes by liquid chromatography-tandem mass spectrometry revealed the presence of the ubiquitin protease USP34. Our results indicate that USP34 functions downstream of the -catenin destruction complex to control the stability of axin and opposes its tankyrase-dependent ubiquitination. Reflecting on the requirement for tight control of axin homeostasis during Wnt signaling, interfering with USP34 function by RNA interference leads to the degradation of axin and to the inhibition of -catenin-mediated transcription. Given the numerous human diseases exhibiting spurious Wnt pathway activation, the development of USP34 inhibitors may offer a novel therapeutic opportunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.