A series of heterometal cubane-type clusters containing [VFe(3)S(4)](2+) and [MoFe(3)S(4)](3+,2+) cores has been prepared. Ligand substitution of [(DMF)(3)VFe(3)S(4)Cl(3)](-) affords [(Tpms)VFe(3)S(4)L(3)](2)(-) (L = Cl(-) (8), EtS(-) (9), p-MeC(6)H(4)S(-), p-MeC(6)H(4)O(-)). A new procedure for the preparation of molybdenum single cubanes is introduced by the reaction of recently reported [(Tp)MoS(S(4))](-) with FeCl(2)/NaSEt to afford [(Tp)MoFe(3)S(4)Cl(3)](-) (1, 75% yield). This procedure is more efficient that the existing multistep synthesis of single cubanes, which generally affords clusters of mirror symmetry. Also prepared were [(Tp)MoFe(3)S(4)L(3)](-) (L = EtS(-) (2), p-MeC(6)H(4)S(-)). Reduction of 1 with borohydride gives [(Tp)MoFe(3)S(4)Cl(3)](2-) (5, 67%). Owing to the nature of the heterometal ligand, all clusters have idealized trigonal symmetry, reflected in their (1)H NMR spectra. Trigonal structures are demonstrated by crystallography of (Bu(4)N)[1,2], (Bu(4)N)(2)[5] x MeCN, and (Me(4)N)(2)[8,9]. The availability of 1 and 5 allows the first comparison of structures and (57)Fe isomer shifts of [MoFe(3)S(4)](3+,2+) in a constant ligand environment. Small increases in most bond distances indicate that an antibonding electron is added in the reduction of 1. Collective synthetic and electrochemical results from this and other studies demonstrate the existence of the series of oxidation states [VFe(3)S(4)](3+,2+,1+) and [MoFe(3)S(4)](4+,3+,2+) whose relative stabilities within a given series are strongly ligand dependent. Isomer shifts indicate that the reduction of 1 largely affects the Fe(3) subcluster and are consistent with the formal descriptions [MoFe(3+)(2)Fe(2+)S(4)](3+) (1) and [MoFe(3+)Fe(2+)(2)S(4)](2+) (5). Reaction of 1 with excess Li(2)S in acetonitrile affords the double cubane [[(Tp)MoFe(3)S(4)Cl(2)](2)(mu(2)(-)S)](2)(-), whose sulfide-bridged structure is supported by two sequential reductions separated by 290 mV, in analogy with previously reported double cubanes of higher charge. Trigonally symmetric single cubanes eliminate isomers in the formation of double cubanes and other cluster structures, and may be of considerable value in the preparation of new types of M-Fe-S clusters. (Tpms = tris(pyrazolyl)methanesulfonate(1-); Tp = hydrotris(pyrazolyl)borate(1-).)
The five‐coordinate geometry is an important factor in phosphoryl group transfer, particularly for phosphate ester hydrolysis. In the following review we analyze the five‐coordinate geometries for a range of VO4X coordination spheres with regard to their structure from the point of view of square pyramidal or trigonal bipyramidal geometries. The actual differences for the coordination environment of the reported small molecule structures are compared to the coordination environment of vanadate complexed to a protein tyrosine phosphatase (PTP) with four coordinating O atoms and one S atom. These considerations demonstrate that actual differences between the coordination environments are very small and presumably less critical than generally anticipated. This analysis suggests that it is a combination of structural and electronic properties leading to the perfect combination of reactivity and stability for the potent protein phosphatase inhibitor complex, thus confirming the fact that some other geometries have been reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.