Killer whales (Orcinus orca) feed on a wide variety of fish, cephalopods, and marine mammals throughout their cosmopolitan range; however, the dietary breadth that characterizes the species is not reflected in all populations. Here, we present the findings of a 14‐yr study of the diet and feeding habits of killer whales in Prince William Sound, Alaska. Two non‐associating forms of killer whale, termed resident and transient (Bigg et al. 1987), were identified. All prey seen taken by transients were marine mammals, including harbor seals (Phoca vitulina), Dall's porpoises (Phocoenoides dalli), Steller sea lions (Eumetopias jubatus), and harbor porpoises (Phocoena phocoena). Resident killer whales appeared to prey principally on salmon (Oncorhynchus spp.), preferring coho salmon (O. kisutch) over other, more abundant salmon species. Pacific herring (Clupea pallasi) and Pacific halibut (Hippocampus stenolepis) were also taken. Resident killer whales frequently were seen to interact in non‐predatory ways with Steller sea lions and Dall's porpoises, while transients were not. Differences in the social organization and behavior of the resident and transient killer whales in Prince William Sound are discussed in the light of the dietary differences documented here.
Blubber biopsy samples from eastern North Pacific killer whales Orcinus orca were analyzed for fatty acids, carbon and nitrogen stable isotopes and organochlorine contaminants. Fatty acid profiles were sufficiently distinct among the 3 reported ecotypes ('resident,' 'transient' or 'offshore') to enable individual animals to be correctly classified by ecotype and also by mitochondrial DNA (mtDNA) haplotype. Profiles of PCBs also enabled unambiguous classification of all 3 killer whale ecotypes, but stable isotope values lacked sufficient resolution. Fatty acid, stable isotope and PCB profiles of the resident and transient ecotypes were consistent with those expected for these whales based on their reported dietary preferences (fish for resident whales, marine mammals for transients). In addition, these ecotype profiles exhibited broad similarity across geographical regions, suggesting that the dietary specialization reported for resident and transient whales in the well-studied eastern North Pacific populations also extends to the less-studied killer whales in the western Gulf of Alaska and Aleutian Islands. Killer whales of the same ecotype were also grouped by region of sample collection. The mean stable isotope ratios of various regional groups differed considerably, suggesting that the prey preferences of these North Pacific killer whales may be both region and ecotype specific. Furthermore, 3 specific ecotypes of killer whales were found to have measured stable isotope values that were consistent with dietary preferences reported in the literature. Finally, although the offshore population had blubber fatty acid profiles implicating fish as its primary prey, contaminant and stable isotope results were equally congruent with predation on marine mammals.
Global climate change during the Late Pleistocene periodically encroached and then released habitat during the glacial cycles, causing range expansions and contractions in some species. These dynamics have played a major role in geographic radiations, diversification and speciation. We investigate these dynamics in the most widely distributed of marine mammals, the killer whale (Orcinus orca), using a global data set of over 450 samples. This marine top predator inhabits coastal and pelagic ecosystems ranging from the ice edge to the tropics, often exhibiting ecological, behavioural and morphological variation suggestive of local adaptation accompanied by reproductive isolation. Results suggest a rapid global radiation occurred over the last 350 000 years. Based on habitat models, we estimated there was only a 15% global contraction of core suitable habitat during the last glacial maximum, and the resources appeared to sustain a constant global effective female population size throughout the Late Pleistocene. Reconstruction of the ancestral phylogeography highlighted the high mobility of this species, identifying 22 strongly supported long-range dispersal events including interoceanic and interhemispheric movement. Despite this propensity for geographic dispersal, the increased sampling of this study uncovered very few potential examples of ancestral dispersal among ecotypes. Concordance of nuclear and mitochondrial data further confirms genetic cohesiveness, with little or no current gene flow among sympatric ecotypes. Taken as a whole, our data suggest that the glacial cycles influenced local populations in different ways, with no clear global pattern, but with secondary contact among lineages following long-range dispersal as a potential mechanism driving ecological diversification.
Top predators in the marine environment integrate chemical signals acquired from their prey that reflect both the species consumed and the regions from which the prey were taken. These chemical tracers-stable isotope ratios of carbon and nitrogen; persistent organic pollutant (POP) concentrations, patterns and ratios; and fatty acid profiles-were measured in blubber biopsy samples from North Pacific killer whales (Orcinus orca) (n = 84) and were used to provide further insight into their diet, particularly for the offshore group, about which little dietary information is available. The offshore killer whales were shown to consume prey species that were distinctly different from those of sympatric resident and transient killer whales. In addition, it was confirmed that the offshores forage as far south as California. Thus, these results provide evidence that the offshores belong to a third killer whale ecotype. Resident killer whale populations showed a gradient in stable isotope profiles from west (central Aleutians) to east (Gulf of Alaska) that, in part, can be attributed to a shift from off-shelf to continental shelf-based prey. Finally, stable isotope ratio results, supported by field
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.