Land–atmosphere (L-A) interactions are a main driver of Earth’s surface water and energy budgets; as such, they modulate near-surface climate, including clouds and precipitation, and can influence the persistence of extremes such as drought. Despite their importance, the representation of L-A interactions in weather and climate models remains poorly constrained, as they involve a complex set of processes that are difficult to observe in nature. In addition, a complete understanding of L-A processes requires interdisciplinary expertise and approaches that transcend traditional research paradigms and communities. To address these issues, the international Global Energy and Water Exchanges project (GEWEX) Global Land–Atmosphere System Study (GLASS) panel has supported “L-A coupling” as one of its core themes for well over a decade. Under this initiative, several successful land surface and global climate modeling projects have identified hot spots of L-A coupling and helped quantify the role of land surface states in weather and climate predictability. GLASS formed the Local Land–Atmosphere Coupling (LoCo) project and working group to examine L-A interactions at the process level, focusing on understanding and quantifying these processes in nature and evaluating them in models. LoCo has produced an array of L-A coupling metrics for different applications and scales and has motivated a growing number of young scientists from around the world. This article provides an overview of the LoCo effort, including metric and model applications, along with scientific and programmatic developments and challenges.
The increasing availability of remote sensing products for all components of the terrestrial water cycle makes it now possible to evaluate the potential of water balance closure purely from remote sensing sources. We take precipitation (P) from the TMPA and CMORPH products, a Penman‐Monteith based evapotranspiration (E) estimate derived from NASA Aqua satellite data and terrestrial water storage change (ΔS) from the GRACE satellite. Their combined ability to close the water budget is evaluated over the Mississippi River basin for 2003–5 by estimating streamflow (Q) as a residual of the water budget and comparing to streamflow measurements. We find that Q is greatly overestimated due mainly to the high bias in P, especially in the summer. Removal of systematic biases in P reduces the error significantly. However, uncertainties in the individual budget components due to simplifications in process algorithms and input data error are generally larger than the measured streamflow.
Land–atmosphere coupling strength or the degree to which land surface anomalies influence boundary layer development—and in extreme cases, rainfall—is arguably the single most fundamental criterion for evaluating hydrological model performance. The Global Land–Atmosphere Coupling Experiment (GLACE) showed that strength of coupling and its representation can affect a model’s ability to simulate climate predictability at the seasonal time scale. And yet, the lack of sufficient observations of coupling at appropriate temporal and spatial scales has made achieving “true” coupling in models an elusive goal. This study uses Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) soil moisture (SM), multisensor remote sensing (RS) evaporative fraction (EF), and Atmospheric Infrared Sounder (AIRS) lifting condensation level (LCL) to evaluate the realism of coupling in the Global Land Data Assimilation System (GLDAS) suite of land surface models (LSMs), Princeton Global Forcing Variable Infiltration Capacity model (PGF–VIC), seven global reanalyses, and the North American Regional Reanalysis (NARR) over a 5-yr period (2003–07). First, RS and modeled estimates of SM, EF, and LCL are intercompared. Then, emphasis is placed on quantifying RS and modeled differences in convective-season daily correlations between SM–LCL, SM–EF, and EF–LCL for global, regional, and conditional samples. RS is found to yield a substantially weaker state of coupling than model products. However, the rank order of basins by coupling strength calculated from RS and models do roughly agree. Using a mixture of satellite and modeled variables, a map of hybrid coupling strength was produced, which supports the findings of GLACE that transitional zones tend to have the strongest coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.