Purpose The management of cervical facet dislocation injuries remains controversial. The main purpose of this investigation was to identify whether a surgeon's geographic location or years in practice influences their preferred management of traumatic cervical facet dislocation injuries. Methods A survey was sent to 272 AO Spine members across all geographic regions and with a variety of practice experience. The survey included clinical case scenarios of cervical facet dislocation injuries and asked responders to select preferences among various diagnostic and management options. Results A total of 189 complete responses were received. Over 50% of responding surgeons in each region elected to initiate management of cervical facet dislocation injuries with an MRI, with 6 case exceptions. Overall, there was considerable agreement between American and European responders regarding management of these injuries, with only 3 cases exhibiting a significant difference. Additionally, results also exhibited considerable management agreement between those with ≤ 10 and > 10 years of practice experience, with only 2 case exceptions noted. Conclusion More than half of responders, regardless of geographical location or practice experience, identified MRI as a screening imaging modality when managing cervical facet dislocation injuries, regardless of the status of the spinal cord and prior to any additional intervention. Additionally, a majority of surgeons would elect an anterior approach for the surgical management of these injuries. The study found overall agreement in management preferences of cervical facet dislocation injuries around the globe.
Sagittal pelvic alignment in patients with SK is not different from that in normal subjects. Furthermore, in SK thoracic kyphosis did not correlate with any distal region of the spine (lumbar or pelvic). Further understanding of the relationship between sagittal spinopelvic alignment in various conditions causing spinal deformity will lead to better treatment of these conditions.
The Independent Simultaneous Source (ISS) seismic acquisition in the southern Columbus Basin conducted by WesternGeco for BPTT is in the early stages of seismic processing. Early results are already revealing improved imaging and structural interpretations.Improvements in imaging and depth conversion are compelling, largely the result of full azimuths, longer azimuths, higher fold, lower frequency content and P/Z recording. Because of these factors the resultant OBC data leads to improved velocity model building utilizing BP's Full Waveform Inversion, FWI, techniques.In a field wide comparison done in the southern part of the basin the OBC image provided marked increases in the following over the heritage streamer data; a. Fault clarity, where reflector terminations and linkages are much clearer. b. Reflector continuity, especially in the deeper (greater than 12,000 ft. depths). This improvement seen throughout the dataset is most noticeable below shallow gas accumulations and in areas next to platforms previously only covered by lower fold data. Seismic sequences are also now more interpretable. c. Flat-spot detection where previous identification was unknown. d. Early results also point to improved spatial positioning of reflectors under shallow gas accumulations and, in the depth migrated volumes, the removal of the sag due to incorrect velocity fields. This paper illustrates comparisons in the Columbus Basin between the new OBC data and heritage streamer data in support of the above claims of improved image and depth positioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.