Integrated assessment of social and environmental sustainability dynamics in the Ganges-Brahmaputra-Meghna delta, Bangladesh Nicholls, R. J.; Hutton, C. W.; Lazar, A. N.; Allan, A.; Adger, W. N.; Adams, H.; Wolf, J.; Rahman, M.; Salehin, M. Published in:Estuarine, Coastal and Shelf Science DOI:10.1016/j.ecss.2016.08.017 Publication date: 2016 Document Version Peer reviewed version Link to publication in Discovery Research PortalCitation for published version (APA): Nicholls, R. J., Hutton, C. W., Lazar, A. N., Allan, A., Adger, W. N., Adams, H., ... Salehin, M. (2016). Integrated assessment of social and environmental sustainability dynamics in the Ganges-Brahmaputra-Meghna delta, Bangladesh. Estuarine, Coastal and Shelf Science, 183(B), 370-381. https://doi.org/10.1016/j.ecss.2016.08.017 General rightsCopyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain.• You may freely distribute the URL identifying the publication in the public portal. Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract: Deltas provide diverse ecosystem services and benefits for their populations. At the same time, deltas are also recognised as one of the most vulnerable coastal environments, with a range of drivers operating at multiple scales, from global climate change and sea-level rise to deltaic-scale subsidence and land cover change. These drivers threaten these ecosystem services, which often provide livelihoods for the poorest communities in these regions. The imperative to maintain ecosystem services presents a development challenge: how to develop deltaic areas in ways that are sustainable and benefit all residents including the most vulnerable. Here we present an integrated framework to analyse changing ecosystem services in deltas and the implications for human well-being, focussing in particular on the provisioning ecosystem services of agriculture, inland and offshore capture fisheries, aquaculture and mangroves that directly support livelihoods. The framework is applied to the world's most populated delta, the GangesBrahmaputra-Meghna Delta within Bangladesh. The framework adopts a systemic perspective to represent the principal biophysical and socioecological components and their interaction. A range of methods are integrated within a quantitative framework, including biophysical and socio-economic modelling and analyses of governance through scenario development. The approach is iterative, with learning both within the pro...
To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision-making. The framework facilitates improved integrated assessments of the potential impacts and plausible adaptation policy choices (including migration) under uncertain future changing conditions. The concept, methods, and processes presented are transferable to other sub-national socio-ecological settings with multi-scale challenges.
This paper demonstrates a methodology for integrating existing models for the rapid simulation of coastal flood events across a large and varied case study area on the UK south coast. Following validation against observations from real coastal floods, synthetic events driven by realistic waves and water levels and the full range of failure mechanisms were modelled for a range of loadings to generate peak flood water depths and an overview of impacts across this spectrum of possible floods. Overtopping is relatively important compared to breaching as coastal floodplains are small. This modelling system supports multiple potential applications, such as planning flood warnings, coastal defence upgrade, and land use, including under sea-level rise. The concepts drawn from this study are transferable to similar coastal regions.
Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of pricing due to greater susceptibility to climate vagaries. The livelihood and poverty results highlight the importance of the holistic consideration of the human-nature system and the careful selection of poverty indicators. Although the simulation model at this stage contains the minimum elements required to simulate the complexity of farmer livelihood interactions in coastal Bangladesh, the crop and socio-economic findings compare well with expected behaviours. The presented integrated model is the first step to develop a holistic, transferable analytic method and tool for coastal Bangladesh.
This study investigates the potential impacts of future climate and socio-economic change on the flow and nitrogen fluxes of the Ganga river system. This is the first basin scale water quality study for the Ganga considering climate change at 25 km resolution together with socio-economic scenarios. The revised dynamic, process-based INCA model was used to simulate hydrology and water quality within the complex multi-branched river basins. All climate realizations utilized in the study predict increases in temperature and rainfall by the 2050s with significant increase by the 2090s. These changes generate associated increases in monsoon flows and increased availability of water for groundwater recharge and irrigation, but also more frequent flooding. Decreased concentrations of nitrate and ammonia are expected due to increased dilution. Different future socio-economic scenarios were found to have a significant impact on water quality at the downstream end of the Ganga. A less sustainable future resulted in a deterioration of water quality due to the pressures from higher population growth, land use change, increased sewage treatment discharges, enhanced atmospheric nitrogen deposition, and water abstraction. However, water quality was found to improve under a more sustainable strategy as envisaged in the Ganga clean-up plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.