IntroductionAlthough physical activity (PA) reduces cardiovascular disease (CVD) risk, physical inactivity remains a pressing public health concern, especially among African American (AA) women in the USA. PA interventions focused on AA women living in resource-limited communities with scarce PA infrastructure are needed. Mobile health (mHealth) technology can increase access to PA interventions. We describe the development of a clinical protocol for a multilevel, community-based, mHealth PA intervention for AA women.Methods and analysisAn mHealth intervention targeting AA women living in resource-limited Washington, DC communities was developed based on the socioecological framework for PA. Over 6 months, we will use a Sequential Multi-Assignment, Randomized Trial approach to compare the effects on PA of location-based remote messaging (named ‘tailored-to-place’) to standard remote messaging in an mHealth intervention. Participants will be randomised to a remote messaging intervention for 3 months, at which point the intervention strategy will adapt based on individuals’ PA levels. Those who do not meet the PA goal will be rerandomised to more intensive treatment. Participants will be followed for another 3 months to determine the contribution of each mHealth intervention to PA level. This protocol will use novel statistical approaches to account for the adaptive strategy. Finally, effects of PA changes on CVD risk biomarkers will be characterised.Ethics and disseminationThis protocol has been developed in partnership with a Washington, DC-area community advisory board to ensure feasibility and acceptability to community members. The National Institutes of Health Intramural IRB approved this research and the National Heart, Lung, and Blood Institute provided funding. Once published, results of this work will be disseminated to community members through presentations at community advisory board meetings and our quarterly newsletter.Trial registration numberNCT03288207.
Background: Psychosocial stress correlates with cardiovascular (CV) events; however, associations between physiologic measures of stressors and CVD remain incompletely understood, especially in racial/ethnic minority populations in resource-limited neighborhoods. We examined associations between chronic stress-related neural activity, measured by amygdalar 18Fluorodeoxyglucose (18FDG) uptake, and aortic vascular FDG uptake (arterial inflammation measure) in a community-based cohort.Methods: Forty participants from the Washington, DC CV Health and Needs Assessment (DC-CHNA), a study of a predominantly African-American population in resource-limited urban areas and 25 healthy volunteers underwent detailed phenotyping, including 18FDG PET/CT for assessing amygdalar activity (AmygA), vascular FDG uptake, and hematopoietic (leukopoietic) tissue activity. Mediation analysis was used to test whether the link between AmygA and vascular FDG uptake was mediated by hematopoietic activity.Results: AmygA (1.11 ± 0.09 vs. 1.05 ± 0.09, p = 0.004) and vascular FDG uptake (1.63 ± 0.22 vs. 1.55 ± 0.17, p = 0.05) were greater in the DC-CHNA cohort compared to volunteers. Within the DC-CHNA cohort, AmygA associated with vascular FDG uptake after adjustment for Framingham score and body mass index (β = 0.41, p = 0.015). The AmygA and aortic vascular FDG uptake relationship was in part mediated by splenic (20.2%) and bone marrow (11.8%) activity.Conclusions: AmygA, or chronic stress-related neural activity, associates with subclinical CVD risk in a community-based cohort. This may in part be mediated by the hematopoietic system. Our findings of this hypothesis-generating study are suggestive of a potential relationship between chronic stress-related neural activity and subclinical CVD in an African American community-based population. Taken together, these findings suggest a potential mechanism by which chronic psychosocial stress, such as stressors that can be experienced in adverse social conditions, promotes greater cardiovascular risk amongst resource-limited, community-based populations most impacted by cardiovascular health disparities. However, larger prospective studies examining these findings in other racially and ethnically diverse populations are necessary to confirm and extend these findings.
Background: Cardiovascular disease (CVD) is the leading cause of death in the world. Given the role of immune cells in atherosclerosis development and progression, effective methods for characterizing immune cell populations are needed, particularly among populations disproportionately at risk for CVD. Results: By using a variety of antibodies combined in one staining protocol, we were able to identify granulocyte, lymphocyte, and monocyte sub-populations by CD-antigen expression from 500 µl of whole blood, enabling a more extensive comparison than what is possible with a complete blood count and differential (CBC). The flow cytometry panel was established and tested in a total of 29 healthy men and women. As a proof of principle, these 29 samples were split by their race/ethnicity: African-Americans (AA) (N = 14) and Caucasians (N = 15). We found in accordance with the literature that AA had fewer granulocytes and more lymphocytes when compared to Caucasians, though the proportion of total monocytes was similar in both groups. Several new differences between AA and Caucasians were noted that had not been previously described. For example, AA had a greater proportion of platelet adhesion on nonclassical monocytes when compared to Caucasians, a cell-to-cell interaction described as crucially important in CVD. We also examined our flow panel in a clinical population of AA women with known CVD risk factors (N = 20). Several of the flow cytometry parameters that cannot be measured with the CBC displayed correlations with clinical CVD risk markers. For instance, Framingham Risk Score (FRS) calculated for each participant correlated with immune cell platelet aggregates (PA) (e.g. T cell PA β = 0.59, p = 0.03 or non-classical monocyte PA β = 0.54, p = 0.02) after adjustment for body mass index (BMI). Conclusion: A flow cytometry panel identified differences in granulocytes, monocytes, and lymphocytes between AA and Caucasians which may contribute to increased CVD risk in AA. Moreover, this flow panel identifies immune
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.