Electronic noses (ENs), are used for many applications, but we must emphasize the importance of their application to foodstuffs like coffee. This paper presents a research study about the analysis of Colombian coffee samples for the detection and classification of defects (i.e., using “Cup Tests”), which was conducted at the Almacafé quality control laboratory in Cúcuta, Colombia. The results obtained show that the application of an electronic nose called “A-NOSE”, may be used in the coffee industry for the cupping tests. The results show that e-nose technology can be a useful tool for quality control to evaluate the excellence of the Colombian coffee produced by National Federation of Coffee Growers.
We present here the first study that directly correlates gastric cancer (GC) with specific biomarkers in the exhaled breath composition on a South American population, which registers one of the highest global incidence rates of gastric affections. Moreover, we demonstrate a novel solid state sensor that predicts correct GC diagnosis with 97% accuracy. Alveolar breath samples of 30 volunteers (patients diagnosed with gastric cancer and a controls group formed of patients diagnosed with other gastric diseases) were collected and analyzed by gas-chromatography/mass-spectrometry (GC-MS) and with an innovative chemical gas sensor based on gold nanoparticles (AuNP) functionalized with octadecylamine ligands. Our GC-MS analyses identified 6 volatile organic compounds that showed statistically significant differences between the cancer patients and the controls group. These compounds were different from those identified in previous studied performed on other populations with high incidence rates of this malady, such as China (representative for Eastern Asia region) and Latvia (representative for Baltic States), attributable to lifestyle, alimentation and genetics differences. A classification model based on principal component analysis of our sensor data responses to the breath samples yielded 97% accuracy, 100% sensitivity and 93% specificity. Our results suggest a new and non-intrusive methodology for early diagnosis of gastric cancer that may be deployed in regions lacking well-developed health care systems as a prediagnosis test for selecting the patients that should undergo deeper investigations (e.g., endoscopy and biopsy).
This article studies the development and implementation of different electronic devices for measuring signals during stress situations, specifically in academic contexts in a student group of the Engineering Department at the University of Pamplona (Colombia). For the research’s development, devices for measuring physiological signals were used through a Galvanic Skin Response (GSR), the electrical response of the heart by using an electrocardiogram (ECG), the electrical activity produced by the upper trapezius muscle (EMG), and the development of an electronic nose system (E-nose) as a pilot study for the detection and identification of the Volatile Organic Compounds profiles emitted by the skin. The data gathering was taken during an online test (during the COVID-19 Pandemic), in which the aim was to measure the student’s stress state and then during the relaxation state after the exam period. Two algorithms were used for the data process, such as Linear Discriminant Analysis and Support Vector Machine through the Python software for the classification and differentiation of the assessment, achieving 100% of classification through GSR, 90% with the E-nose system proposed, 90% with the EMG system, and 88% success by using ECG, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.