Preservation of wood structures against degradation represents an old, and however, a new challenge. Wood, as a natural hybrid composite material, represents a versatile and widely exploited renewable resource for indoor and outdoor applications. Its constitutive biopolymers are subjected to intense and progressive oxidative degradation processes under environmental conditions of exposure, affecting wood’s native durability and generating significant structural and color changes, along with progressive diminution of its resistance against biological agents. One effective way to prevent wood degradation is to apply coating protective layers by chemical modification of the surface. In this context, increasing interest for improving wood coatings behavior under exposure to outdoor applications, when these are able to prevent or limit to a large extent the deleterious effects of environmental factors upon their performance, justifies enhanced research efforts to provide new effective solutions for sustainable wood protection. Recent trends in this area include use of bio-based natural products – extractives, oils, waxes, resins, biopolymers, biological control agents – for which the main classification criterion is represented by the type of protection provided, considering the large available variety of such formulations. The present paper focuses on the most recent literature data with significant assessment of specific topics related to these issues.
The effects of electron beam irradiation on the properties of ethylene propylene diene monomer (EPDM)/butyl rubber composites in presence of a polyfunctional monomer were investigated by means of differential scanning calorimetry (DSC), thermal analysis, scanning electron microscopy (SEM), attenuated total reflection absorption infrared spectroscopy (ATR-IR), and mechanical and surface energy measurements. The samples were exposed over a wide range of irradiation doses (20–150 kGy). The EPDM matrix was modified with butyl rubber, chlorobutyl rubber, and bromobutyl rubber. The gel content and crosslink density were found to increase with the electron beam irradiation dose. The values of the hardness and modulus increased gradually with the irradiation dose, while the tensile strength and elongation at break decreased with increasing irradiation dose. The EPDM/butyl rubber composites presented a higher thermal stability compared to the initial EPDM sample. The incorporation of butyl rubbers into the EPDM matrix led to an increase in material hydrophobicity. A similar trend was observed when the irradiation dose increased. The greatest change in the surface free energy and the contact angles occurs at an irradiation dose of 20 kGy. The Charlesby–Pinner plots prove the tendency to crosslinking as the irradiation dose increases.
Novel polysiloxanes with dielectric properties which are systematically fine-tuned by utilizing thiol-ene post-polymerization reactions of a polymethylvinylsiloxane with various ratios of 1-butanethiol and 3-mercaptopropionitrile is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.