Automatic image processing methods are a prerequisite to efficiently analyze the large amount of image data produced by computed tomography (CT) scanners during cardiac exams. This paper introduces a model-based approach for the fully automatic segmentation of the whole heart (four chambers, myocardium, and great vessels) from 3-D CT images. Model adaptation is done by progressively increasing the degrees-of-freedom of the allowed deformations. This improves convergence as well as segmentation accuracy. The heart is first localized in the image using a 3-D implementation of the generalized Hough transform. Pose misalignment is corrected by matching the model to the image making use of a global similarity transformation. The complex initialization of the multicompartment mesh is then addressed by assigning an affine transformation to each anatomical region of the model. Finally, a deformable adaptation is performed to accurately match the boundaries of the patient's anatomy. A mean surface-to-surface error of 0.82 mm was measured in a leave-one-out quantitative validation carried out on 28 images. Moreover, the piecewise affine transformation introduced for mesh initialization and adaptation shows better interphase and interpatient shape variability characterization than commonly used principal component analysis.
An 18-patient study demonstrated significant correlations between 4D-CT ventilation and PFT measurements as well as SPECT ventilation, providing evidence toward the validation of 4D-CT ventilation imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.