The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model–experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved.
A hybrid differential‐discrete mathematical model has been used to simulate biofilm structures (surface shape, roughness, porosity) as a result of microbial growth in different environmental conditions. In this study, quantitative two‐ and three‐dimensional models were evaluated by introducing statistical measures to characterize the complete biofilm structure, both the surface structure and volume structure. The surface enlargement, coefficient of roughness, fractal dimension of surface, biofilm compactness, and solids hold‐up were found to be good measures of biofilm structure complexity. Among many possible factors affecting the biofilm structure, the influence of biomass growth in relation to the diffusive substrate transport was investigated. Porous biofilms, with many channels and voids between the “finger‐like” or “mushroom” outgrowth, were obtained in a substrate‐transport‐limited regime. Conversely, compact and dense biofilms occurred in systems limited by the biomass growth rate and not by the substrate transfer rate. The surface complexity measures (enlargement, roughness, fractal dimension) all increased with increased transport limitation, whereas the volume measures (compactness, solid hold‐up) decreased, showing the change from a compact and dense to a highly porous and open biofilm. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:101–116, 1998.
Individual-based modelling of biofilms accounts for the fact that individual organisms of the same species may well be in a different physiological state as a result of environmental gradients, lag times in responding to change, or noise in gene expression, which we have become increasingly aware of with the advent of single-cell microbiology. But progress in developing and using individual-based modelling has been hampered by different groups writing their own code and the lack of an available standard model. We therefore set out to merge most features of previous models and incorporate various improvements in order to provide a common basis for further developments. Four improvements stand out: the biofilm pressure field allows for shrinking or consolidating biofilms; the continuous-in-time extracellular polymeric substances excretion leads to more realistic fluid behaviour of the extracellular matrix, avoiding artefacts; the stochastic chemostat mode allows comparison of spatially uniform and heterogeneous systems; and the separation of growth kinetics from the individual cell allows condition-dependent switching of metabolism. As an illustration of the model's use, we used the latter feature to study how environmentally fluctuating oxygen availability affects the diversity and composition of a community of denitrifying bacteria that induce the denitrification pathway under anoxic or low oxygen conditions. We tested the hypothesis that the existence of these diverse strategies of denitrification can be explained solely by assuming that faster response incurs higher costs. We found that if the ability to switch metabolic pathways quickly incurs no costs the fastest responder is always the best. However, if there is a trade-off where faster switching incurs higher costs, then there is a strategy with optimal response time for any frequency of environmental fluctuations, suggesting that different types of denitrifying strategies win in different environments. In a single environment, biodiversity of denitrifiers is higher in biofilms than chemostats, higher with than without costs and higher at intermediate frequency of change. The highly modular nature of the new computational model made this case study straightforward to implement, and reflects the sort of novel studies that can easily be executed with the new model.
Understanding the emergence of the complex organization of biofilms from the interactions of its parts, individual cells and their environment, is the aim of the individual-based modelling (IbM) approach. This IbM is version 2 of BacSim, a model of Escherichia coli colony growth, which was developed into a two-dimensional multi-substrate, multi-species model of nitrifying biofilms. It was compared with the established biomass-based model (BbM) of Picioreanu and others. Both models assume that biofilm growth is due to the processes of diffusion, reaction and growth (including biomass growth, division and spreading). In the IbM, each bacterium was a spherical cell in continuous space and had variable growth parameters. Spreading of biomass occurred by shoving of cells to minimize overlap between cells. In the BbM, biomass was distributed in a discrete grid and each species had uniform growth parameters. Spreading of biomass occurred by cellular automata rules. In the IbM, the effect of random variation of growth parameters of individual bacteria was negligible in contrast to the E. coli colony model, because the heterogeneity of substrate concentrations in the biofilm was more important. The growth of a single cell into a clone, and therefore also the growth of the less abundant species, depended on the randomly chosen site of attachment, owing to the heterogeneity of substrate concentrations in the biofilm. The IbM agreed with the BbM regarding the overall growth of the biofilm, due to the same diffusion-reaction processes. However, the biofilm shape was different due to the different biomass spreading mechanisms. The IbM biofilm was more confluent and rounded due to the steady, deterministic and directionally unconstrained spreading of the bacteria. Since the biofilm shape is influenced by the spreading mechanism, it is partially independent of growth, which is driven by diffusion-reaction. Chance in initial attachment events modifies the biofilm shape and the growth of single cells because of the high heterogeneity of substrate concentrations in the biofilm, which again results from the interaction of diffusion-reaction with spreading. This stresses the primary importance of spreading and chance in addition to diffusion-reaction in the emergence of the complexity of the biofilm community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.