Heterotrophic organisms generally face a trade-off between rate and yield of adenosine triphosphate (ATP) production. This trade-off may result in an evolutionary dilemma, because cells with a higher rate but lower yield of ATP production may gain a selective advantage when competing for shared energy resources. Using an analysis of model simulations and biochemical observations, we show that ATP production with a low rate and high yield can be viewed as a form of cooperative resource use and may evolve in spatially structured environments. Furthermore, we argue that the high ATP yield of respiration may have facilitated the evolutionary transition from unicellular to undifferentiated multicellular organisms.
Another social science looks at itself Experimental economists have joined the reproducibility discussion by replicating selected published experiments from two top-tier journals in economics. Camerer et al. found that two-thirds of the 18 studies examined yielded replicable estimates of effect size and direction. This proportion is somewhat lower than unaffiliated experts were willing to bet in an associated prediction market, but roughly in line with expectations from sample sizes and P values. Science , this issue p. 1433
Here we provide further details on the replications, the estimation of standardized effect sizes and complementary replicability indicators, the implementation of the prediction markets and surveys, the comparison of prediction market beliefs, survey beliefs, and replication outcomes, the comparison of reproducibility indicators to experimental economics and the psychological sciences, and additional results and data for the individual studies and markets. The code used for the estimation of replication power, standardized effect sizes, all complementary replication indicators, and all results is posted at OSF (https://osf.io/pfdyw/). Replications Inclusion criteriaWe replicated 21 experimental studies in the social sciences published between 2010 and 2015 in Nature and Science. We included all studies that fulfilled our inclusion criteria for:(i) the journal and time period, (ii) the type of experiment, (iii) the subjects included in the experiment, (iv) the equipment and materials needed to implement the experiment, and (v) the results reported in the experiment. We did not exclude studies that had already been subject to a replication, as this could affect the representativity of the included studies. We define and discuss the five inclusion criteria below. Journal and time period: We included experimental studies published in Nature andScience between 2010 and 2015. The reason for focusing on these two journals is that they are typically considered the two most prestigious general science journals. Articles published in these journals are considered exciting, innovative, and important, which is also reflected in their high impact factors. * Number of observations; number of individuals provided in parenthesis. † Replicated; significant effect (p < 0.05) in the same direction as in original study. ‡ Statistical power to detect 50% of the original effect size r. § Relative standardized effect size. * Belief about the probability of replicating in stage 1 (90% power to detect 75% of the original effect size).† Predicted added probability of replicating in stage 2 (90% power to detect 50% of the original effect size) compared to stage 1. * Mean number of tokens (points) invested per transaction. † Mean number of shares bought or sold per transaction.
The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model–experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.