52% Yes, a signiicant crisis 3% No, there is no crisis 7% Don't know 38% Yes, a slight crisis 38% Yes, a slight crisis 1,576 RESEARCHERS SURVEYED M ore than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments. Those are some of the telling figures that emerged from Nature's survey of 1,576 researchers who took a brief online questionnaire on reproducibility in research. The data reveal sometimes-contradictory attitudes towards reproduc-ibility. Although 52% of those surveyed agree that there is a significant 'crisis' of reproducibility, less than 31% think that failure to reproduce published results means that the result is probably wrong, and most say that they still trust the published literature. Data on how much of the scientific literature is reproducible are rare and generally bleak. The best-known analyses, from psychology 1 and cancer biology 2 , found rates of around 40% and 10%, respectively. Our survey respondents were more optimistic: 73% said that they think that at least half of the papers in their field can be trusted, with physicists and chemists generally showing the most confidence. The results capture a confusing snapshot of attitudes around these issues, says Arturo Casadevall, a microbiologist at the Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland. "At the current time there is no consensus on what reproducibility is or should be. " But just recognizing that is a step forward, he says. "The next step may be identifying what is the problem and to get a consensus. "
Another social science looks at itself Experimental economists have joined the reproducibility discussion by replicating selected published experiments from two top-tier journals in economics. Camerer et al. found that two-thirds of the 18 studies examined yielded replicable estimates of effect size and direction. This proportion is somewhat lower than unaffiliated experts were willing to bet in an associated prediction market, but roughly in line with expectations from sample sizes and P values. Science , this issue p. 1433
Here we provide further details on the replications, the estimation of standardized effect sizes and complementary replicability indicators, the implementation of the prediction markets and surveys, the comparison of prediction market beliefs, survey beliefs, and replication outcomes, the comparison of reproducibility indicators to experimental economics and the psychological sciences, and additional results and data for the individual studies and markets. The code used for the estimation of replication power, standardized effect sizes, all complementary replication indicators, and all results is posted at OSF (https://osf.io/pfdyw/). Replications Inclusion criteriaWe replicated 21 experimental studies in the social sciences published between 2010 and 2015 in Nature and Science. We included all studies that fulfilled our inclusion criteria for:(i) the journal and time period, (ii) the type of experiment, (iii) the subjects included in the experiment, (iv) the equipment and materials needed to implement the experiment, and (v) the results reported in the experiment. We did not exclude studies that had already been subject to a replication, as this could affect the representativity of the included studies. We define and discuss the five inclusion criteria below. Journal and time period: We included experimental studies published in Nature andScience between 2010 and 2015. The reason for focusing on these two journals is that they are typically considered the two most prestigious general science journals. Articles published in these journals are considered exciting, innovative, and important, which is also reflected in their high impact factors. * Number of observations; number of individuals provided in parenthesis. † Replicated; significant effect (p < 0.05) in the same direction as in original study. ‡ Statistical power to detect 50% of the original effect size r. § Relative standardized effect size. * Belief about the probability of replicating in stage 1 (90% power to detect 75% of the original effect size).† Predicted added probability of replicating in stage 2 (90% power to detect 50% of the original effect size) compared to stage 1. * Mean number of tokens (points) invested per transaction. † Mean number of shares bought or sold per transaction.
We measure how accurately replication of experimental results can be predicted by black-box statistical models. With data from four large-scale replication projects in experimental psychology and economics, and techniques from machine learning, we train predictive models and study which variables drive predictable replication. The models predicts binary replication with a cross-validated accuracy rate of 70% (AUC of 0.77) and estimates of relative effect sizes with a Spearman ρ of 0.38. The accuracy level is similar to market-aggregated beliefs of peer scientists [1, 2]. The predictive power is validated in a pre-registered out of sample test of the outcome of [3], where 71% (AUC of 0.73) of replications are predicted correctly and effect size correlations amount to ρ = 0.25. Basic features such as the sample and effect sizes in original papers, and whether reported effects are single-variable main effects or two-variable interactions, are predictive of successful replication. The models presented in this paper are simple tools to produce cheap, prognostic replicability metrics. These models could be useful in institutionalizing the process of evaluation of new findings and guiding resources to those direct replications that are likely to be most informative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.