Background and purposeHead down tilt 15° (HDT15°), applied before recanalization, increases collateral flow and improves outcome in experimental ischemic stroke. For its simplicity and low cost, HDT15° holds considerable potential to be developed as an emergency treatment of acute stroke in the prehospital setting, where hemorrhagic stroke is the major mimic of ischemic stroke. In this study, we assessed safety of HDT15° in the acute phase of experimental intracerebral hemorrhage.MethodsIntracerebral hemorrhage was produced by stereotaxic injection of collagenase in Wistar rats. A randomized noninferiority trial design was used to assign rats to HDT15° or flat position (n = 64). HDT15° was applied for 1 h during the time window of hematoma expansion. The primary outcome was hematoma volume at 24 h. Secondary outcomes were mass effect, mortality, and functional deficit in the main study and acute changes of intracranial pressure, hematoma growth, and cardiorespiratory parameters in separate sets of randomized animals (n = 32).ResultsHDT15° achieved the specified criteria of noninferiority for hematoma volume at 24 h. Mass effect, mortality, and functional deficit at 24 h showed no difference in the two groups. HDT15° induced a mild increase in intracranial pressure with respect to the pretreatment values (+2.91 ± 1.76 mmHg). HDT15° had a neutral effect on MRI‐based analysis of hematoma growth and cardiorespiratory parameters.ConclusionsApplication of HDT15° in the hyperacute phase of experimental intracerebral hemorrhage does not worsen early outcome. Further research is needed to implement HDT15° as an emergency collateral therapeutic for acute stroke.
Adult-type diffuse gliomas are treated with a multimodality treatment approach that includes radiotherapy both in the primary setting, and in the case of progressive or recurrent disease. Radiation necrosis represents a major complication of radiotherapy. Recurrent disease and treatment-related changes are often indistinguishable using conventional imaging methods. The present systematic review aims at assessing the diagnostic role of PET imaging using different radiopharmaceuticals in differentiating radiation necrosis and disease relapse in irradiated adult-type diffuse gliomas. We conducted a comprehensive literature search using the PubMed/MEDLINE and EMBASE databases for original research studies of interest. In total, 436 articles were assessed for eligibility. Ten original papers, published between 2014 and 2022, were selected. Four articles focused on [18F]FDG, seven on amino acid tracers ([18F]FET n = 3 and [11C]MET n = 4), one on [11C]CHO, and one on [68Ga]Ga-PSMA. Visual assessment, semi-quantitative methods, and radiomics were applied for image analysis. Furthermore, 2/10 papers were comparative studies investigating different radiopharmaceuticals. The present review, the first one on the topic in light of the new 2021 CNS WHO classification, highlighted the usefulness of PET imaging in distinguishing radiation necrosis and tumour recurrence, but revealed high heterogeneity among studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.