BackgroundThe human genome contains several active families of transposable elements (TE): Alu, L1 and SVA. Germline transposition of these elements can lead to polymorphic TE (polyTE) loci that differ between individuals with respect to the presence/absence of TE insertions. Limited sets of such polyTE loci have proven to be useful as markers of ancestry in human population genetic studies, but until this time it has not been possible to analyze the full genomic complement of TE polymorphisms in this way.ResultsFor the first time here, we have performed a human population genetic analysis based on a genome-wide polyTE data set consisting of 16,192 loci genotyped in 2,504 individuals across 26 human populations. PolyTEs are found at very low frequencies, > 93 % of loci show < 5 % allele frequency, consistent with the deleteriousness of TE insertions. Nevertheless, polyTEs do show substantial geographic differentiation, with numerous group-specific polymorphic insertions. African populations have the highest numbers of polyTEs and show the highest levels of polyTE genetic diversity; Alu is the most numerous and the most diverse polyTE family. PolyTE genotypes were used to compute allele sharing distances between individuals and to relate them within and between human populations. Populations and continental groups show high coherence based on individuals’ polyTE genotypes, and human evolutionary relationships revealed by these genotypes are consistent with those seen for SNP-based genetic distances. The patterns of genetic diversity encoded by TE polymorphisms recapitulate broad patterns of human evolution and migration over the last 60–100,000 years. The utility of polyTEs as ancestry informative markers is further underscored by their ability to accurately predict both ancestry and admixture at the continental level. A genome-wide list of polyTE loci, along with their population group-specific allele frequencies and FST values, is provided as a resource for investigators who wish to develop panels of TE-based ancestry markers.ConclusionsThe genetic diversity represented by TE polymorphisms reflects known patterns of human evolution, and ensembles of polyTE loci are suitable for both ancestry and admixture analyses. The patterns of polyTE allelic diversity suggest the possibility that there may be a connection between TE-based genetic divergence and population-specific phenotypic differences.Graphical AbstractᅟElectronic supplementary materialThe online version of this article (doi:10.1186/s13100-015-0052-6) contains supplementary material, which is available to authorized users.
Proof. We prove the lemma by considering the sign of the difference between D KL (p R 0 ||p R 0 +1 ) and D KL (p R 0 ||p R 0 −1 ), which depends on the (relative) values of R 0 , N and n.
Objective prior distributions represent an important tool that allows one to have the advantages of using the Bayesian framework even when information about the parameters of a model is not available. The usual objective approaches work off the chosen statistical model and in the majority of cases the resulting prior is improper, which can pose limitations to a practical implementation, even when the complexity of the model is moderate. In this paper we propose to take a novel look at the construction of objective prior distributions, where the connection with a chosen sampling distribution model is removed. We explore the notion of defining objective prior distributions which allow one to have some degree of flexibility, in particular in exhibiting some desirable features, such as being proper, or centered on specific values which would be of interest in nested model comparisons.The basic tool we use are proper scoring rules and the main result is a class of objective prior distributions that can be employed in scenarios where the usual model based priors fail, such as mixture models and model selection via Bayes factors. In addition, we show that the proposed class of priors is the result of minimising the information it contains, providing solid interpretation to the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.