The microstructural features of three different materials have been quantified by means of 2D image analysis and X-ray micro-computer tomography (CT) and the results were compared to determine the reliability of the 2D analysis in the material characterization. The 3D quantification of shrinkage pores and Fe-rich inclusions of an Al-Si-Cu alloy by X-ray tomography was compared with the statistical analysis of the 2D metallographic pictures and a significant difference in the results was found due to the complex morphology of shrinkage pores and Fe-rich particles. Furthermore, wood particles of a wood-plastic composite were measured by dynamic image analysis and X-ray tomography. Similar results were obtained for the maximum length of the particles, although the results of width differ considerably, which leads to a miscalculation of the particles aspect ratio. Finally, air voids of a foam concrete were investigated by the analysis of the 2D pictures in ImageJ and the results of the 2D circularity were compared with the values of the 3D elongation obtained by micro-computed tomography. The 3D analysis of the air voids in the foam concrete showed a more precise description of the morphology, although the 2D result are in good agreement with the results obtained by X-ray micro-tomography.
It is important to ensure the durability and safety of structures. In the case of newly developed materials that are outside the current rules, it is important to investigate all aspects of structural safety. The material studied in the following is a structural lightweight concrete with an ultra-high-performance matrix and expanded glass as a lightweight aggregate. The material, with a compressive strength of 60–100 MPa and a bulk density of 1.5–1.9 kg/dm3, showed high capillary porosities of 12 vol% (ultra-high-performance concretes (UHPC) < 5 vol%). Since the capillary porosity basically enables transport processes into the concrete, the material had to be examined more closely from the aspect of durability. Freeze-thaw resistance (68 g/m2) and chemical attack with sulfate at pH 3.5 for 12 weeks (16 g/m2) showed no increase in concrete corrosion. Targeted carbonation (0.53 mm/year0.5) and chloride penetration resistance (6.0 × 10−13 to 12.6 × 10−13 m2/s) also showed good results against reinforcement corrosion. The results show that most of the measured capillary pores resulted from the lightweight aggregate and were not all present as a pore system. Thus, the durability was only slightly affected and the concrete can be compared to an UHPC. Only the abrasion resistance showed an increased value (22,000 mm3/5000 mm2), which, however, only matters if the material is used as a screed.
The material behavior of asphalt depends on its composition of aggregate, bitumen, and air voids. Asphalt pavements consist of multiple layers, making the interaction of the materials at the layer boundary important so that any stresses that occur can be relieved. The material behavior at the layer boundary is not yet understood in detail, as further methods of analysis are lacking in addition to mechanical methods. For this reason, the layer boundary of asphalt structures was analyzed using imaging methods. The aim of this research was to find an imaging method that allows a detailed analysis of the bonding zone of asphalt layers. Two different imaging techniques were used for this purpose. One is a 2-D imaging technique (asphalt petrology) and the other is a 3-D imaging technique (high-resolution computed tomography). Image analysis is a widely used technique in materials science that allows to analyze the material behavior and their composition. In this research, attention was paid to the analysis of the position of the bitumen emulsion, because the contained bitumen is supposed to bond the layers together. It was found that the application of 2-D imaging (asphalt petrology) lacked the precision for a detailed analysis of the individual materials at the layer boundary. With high-resolution computed tomography, a detailed view is possible to visualize the individual materials at the layer boundary in 3D. However, it is difficult to differentiate the materials because there are no gradations in the gray values due to the identical densities. However, it is possible to differentiate between the bitumen from the asphalt and from the emulsion if a high-density tracer is added to the bitumen emulsion for the CT studies. The results of the investigations are presented in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.