Pro- and mature brain-derived neurotrophic factor (BDNF) activate two distinct receptors: p75 neurotrophin receptor (p75(NTR)) and TrkB. Mature BDNF facilitates hippocampal synaptic potentiation through TrkB. Here we report that proBDNF, by activating p75(NTR), facilitates hippocampal long-term depression (LTD). Electron microscopy showed that p75(NTR) localized in dendritic spines, in addition to afferent terminals, of CA1 neurons. Deletion of p75(NTR) in mice selectively impaired the NMDA receptor-dependent LTD, without affecting other forms of synaptic plasticity. p75(NTR-/-) mice also showed a decrease in the expression of NR2B, an NMDA receptor subunit uniquely involved in LTD. Activation of p75(NTR) by proBDNF enhanced NR2B-dependent LTD and NR2B-mediated synaptic currents. These results show a crucial role for proBDNF-p75(NTR) signaling in LTD and its potential mechanism, and together with the finding that mature BDNF promotes synaptic potentiation, suggest a bidirectional regulation of synaptic plasticity by proBDNF and mature BDNF.
Alternatively spliced brain-derived neurotrophic factor (BDNF) transcripts are targeted to distinct cellular compartments in neurons but the mechanisms underlying this sorting are unknown. Although only some BDNF isoforms are targeted to dendrites, we have found that the coding region common to all BDNF transcripts contains a constitutively active dendritic targeting signal and that this signal is suppressed in transcripts containing exons 1 or 4, which are restricted to the cell soma and proximal dendrites. This dendritic targeting signal is mediated by translin, an RNA-binding protein implicated in RNA trafficking, and is disrupted by the G196A mutation associated with memory deficits and psychiatric disorders. Molecular modeling and mutational studies indicate that the G196A mutation blocks dendritic targeting of BDNF mRNA by disrupting its interaction with translin. These findings implicate abnormal dendritic trafficking of BDNF mRNA in the pathophysiology of neuropsychiatric disorders linked to the G196A mutation.neuropsychiatric disorders ͉ neurotrophins S everal lines of evidence indicate that targeting of BDNF mRNA to dendrites plays a key role in mediating synaptic plasticity (1-4). However, the molecular mechanisms regulating this process and the differential subcellular localization of alternatively spliced BDNF transcripts, remain to be clarified.Multiple BDNF transcripts are generated by alternative splicing of one 5Ј exon with a shared 3Ј exon containing the entire BDNF coding region and either a short or long 3Ј UTR sequence (5, 6). In recent studies, we have demonstrated that BDNF transcripts differ in their subcellular localization (7). Exon 1 and 4 transcripts are localized in the cell soma, while exon 2 and 6 transcripts show a somato-dendritic localization. Thus, splice variants appear to encode spatial localization signals used to preferentially regulate BDNF expression in different subcellular domains (2, 3). A recent study has suggested that the long 3Ј UTR contains signals necessary for dendritic targeting of BDNF transcripts (4). However, it is unlikely that this mechanism can fully account for the differential dendritic targeting displayed by BDNF transcripts because more than one-third of exon 4 transcripts, which are retained in the soma, contain the long 3Ј UTR. Conversely, more than one-half of exon 6 transcripts, an isoform that displays targeting to dendrites, contain the short 3Ј UTR. To help define the mechanisms underlying differential localization of BDNF transcripts, we have tested the hypothesis that additional signals might be encoded by other BDNF mRNA regions.
The cellular distribution of GABAC receptor rho1 and rho2 subunits in the rat central nervous system remains controversial. We investigated how these subunits were distributed in cerebellum, hippocampus and spinal cord at postnatal day 1, 7 or in adult life. We found that in the adult cerebellum rho1 and rho2 mRNAs were expressed in Purkinje cells and basket-like cells only. In the hippocampus both subunits were expressed throughout the CA1 pyramidal layer, dentate gyrus and scattered interneurons with maximum staining intensity at P7. In the adult hippocampus in situ staining was predominantly found on interneurons. GABAC antibody labelling in P7 and adult hippocampus was largely overlapping with the in situ staining. Western blot analysis showed GABAC receptor in retina, ovary and testis. In the spinal cord the rho2 signal was consistently stronger than rho1 with overlapping expression patterns. At P1, the most intensely labelled cells were the motoneurons while on P7 and adult sections, interneurons and motoneurons were likewise labelled. On spinal neurons both rho1 and rho2 mRNAs showed somatodendritic localization, extending out for >100 microm with punctate appearance especially in adult cells. A similar spinal distribution pattern was provided with polyclonal antibody labelling, suggesting close correspondence between mRNA and protein compartmentalization. Electrophysiological experiments indicated that P1 spinal motoneurons did possess functional GABAC receptors even though GABAC receptors played little role in evoked synaptic transmission. Our results suggest a pattern of rho1 and rho2 subunit distribution more widespread than hitherto suspected with strong developmental regulation of subunit occurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.