Epigenetic modifications have emerged into one of the cancer hallmarks, replacing the concept of malignant pathologies as being solely genetic-based conditions. The epigenetic landscape is responsible for normal development but also for the heterogeneity among tissues in terms of gene expression patterns. Dysregulation in these mechanisms has been associated with disease stage, and increased attention is now granted to cancer in order to take advantage of these modifications in terms of novel therapeutic strategies or diagnosis/prognosis tools. Oral cancer has also been subjected to epigenetic analysis with numerous studies revealing that the development and progression of this malignancy are partially induced by an altered epigenetic substrate together with genetic alterations and prolonged exposure to environmental risk factors. The present review summarizes the most important epigenetic modifications associated with oral cancer and also their potential to be used as new therapeutic targets.
Regarding cancer as a genetic multi-factorial disease, a number of aspects need to be investigated and analyzed in terms of cancer’s predisposition, development and prognosis. One of these multi-dimensional factors, which has gained increased attention in the oncological field due to its unelucidated role in risk assessment for cancer, is diet. Moreover, as studies advance, a clearer connection between diet and the molecular alteration of patients is becoming identifiable and quantifiable, thereby replacing the old general view associating specific phenotypical changes with the differential intake of nutrients. Respectively, there are two major fields concentrated on the interrelation between genome and diet: nutrigenetics and nutrigenomics. Nutrigenetics studies the effects of nutrition at the gene level, whereas nutrigenomics studies the effect of nutrients on genome and transcriptome patterns. By precisely evaluating the interaction between the genomic profile of patients and their nutrient intake, it is possible to envision a concept of personalized medicine encompassing nutrition and health care. The list of nutrients that could have an inhibitory effect on cancer development is quite extensive, with evidence in the scientific literature. The administration of these nutrients showed significant results in vitro and in vivo regarding cancer inhibition, although more studies regarding administration in effective doses in actual patients need to be done.
EMT represents the dominant program within advanced stages of colon cancer, where cells acquire migratory characteristics in order to invade secondary tissues and form metastasis. Where the majority of the therapeutic strategies are concentrated on the reduction of the tumor mass through different apoptotic mechanisms, the present study advocates an important role for miR-205-5p in impairment of colon cancer cells migration and restoration of the epithelial phenotype. Upon identification of a homogenous downregulated profile for miR-205-5p in colon adenocarcinoma patients, functional studies demonstrated that experimental upregulation of this sequence is able to significantly raise the levels of E-cadherin through direct inhibition of ZEB1. Moreover, the elevation in CDH1 expression was translated into functional parameters where cells lost their invasion and migratory characteristics and formed homogenous clusters through adhesion interactions. Survival analysis of colon adenocarcinoma patients revealed that low levels of miR-205-5p are associated with an unfavorable prognostic compared to those with increased expression, demonstrating the possible clinical utility of miR-205-5p replacement. Exogenous administration of miRNA mimics was not associated with significant changes in cell viability or inflammatory pathways. Therefore, the proposed strategy is aiming towards inhibition of metastasis and limitation of the tumor borders in advanced stages patients in order to prolong the survival time and to increase the efficiency of the current therapeutic strategies.
BackgroundBreast cancer is a highly heterogeneous pathology, exhibiting a number of subtypes commonly associated with a poor outcome. Due to their high stability, microRNAs are often regarded as non-invasive cancer biomarkers, having an expression pattern specific for their ‘cell of origin’.MethodTriple negative breast cancer (TNBC: ER-, PR-, Her-2-) and double positive breast cancer (DPBC: ER+, PR+, Her-2) miRNA expression patterns were obtained by analysis of the TCGA (The Cancer Genome Atlas) data, followed by PCR-array analysis on plasma samples from 20 TNBC patients, 14 DPBC patients and 11 controls.ResultsThree downregulated and nine upregulated miRNAs were obtained from the TNBC analysis. Five overexpressed miRNAs were identified in the DPBC group. Four of the dysregulated miRNAs (miR-10a, miR-125b, miR-210 and miR-489) were common for both groups. The cluster miR-17-92 (miR-17, miR-20a, miR-20b, and miR-93), along with miR-130, miR-22 and miR-29a/c, were found to differentiate between TNBC and DPBC. A panel of five transcripts (miR-10a, miR-125, miR-193b, miR-200b and miR-489) was validated in a new set of plasma samples. The overlapping of TCGA and plasma profiling data revealed miR-200b, miR-200c, miR-210 and miR-29c as common signature. MiR-200b was validated on additional normal and tumor tissue samples. The expression level of this transcript from the TCGA data was correlated with lung and bone metastatic genes.ConclusionThe miR-200b presents a great potential for the future advancements in the diagnostic/prognostic and therapeutic approach of TNBC, along with other coding or non-coding transcripts. However, this needs to be further integrated in a regulatory network that acts in conjunction with other markers that affect the patients’ prognosis or response to therapy.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0920-2) contains supplementary material, which is available to authorized users.
BackgroundBladder cancer (BC) is a common urothelial malignancy, characterized by a high recurrence rate. The biology of bladder cancer is complex and needs to be deciphered. The latest evidence reveals the critical role of the non-coding RNAs, particularly microRNAs (miRNAs), as vital regulatory elements in cancer.MethodWe performed a miRNAs microarray using paired tissues (tumor and adjacent normal bladder tissue), followed by the validation with qRT-PCR of five selected transcripts. Additional next-generation sequencing investigation established the interconnection among the altered miRNAs and mutated genes. Based on the overlapping between TCGA data and data obtained in the study, we focused on the systematic identification of altered miRNAs and genes mutated involved in bladder cancer tumorigenesis and progression.ResultsBy overlapping the miRNAs expression data, the two patient cohorts, we identified 18 miRNAs downregulated and, 187 miRNAs upregulated. qRT-PCR validation was completed using a selected panel of two downregulated (miR-139-5p and miR-143-5p) and three up-regulated miRNAs (miR-141b, miR-200 s or miR-205). Altered miRNAs patterns are interrelated to bladder tumorigenesis, allowing them to be used for the development of novel diagnostic and prognostic biomarkers. Three EMT-related upregulated miRNAs have an essential role in the molecular mechanisms, specifically key processes underlying tumorigenesis, invasion and metastasis. Using the Ampliseq Cancer Panel kit and Ion Torrent PGM Next-Generation Sequencing an increased mutation rate for TP53, FGFR3, KDR, PIK3CA and ATM were observed, but the mutational status for only TP53 was correlated to the survival rate. The miRNAs pattern, along with the gene mutation pattern attained, can assist for better patient diagnosis.ConclusionThis study thereby incorporates miRNAs as critical players in bladder cancer prognosis, where their altered gene expression profiles have a critical biological function in relationship with tumor molecular phenotype. The miRNA-mRNA regulatory networks identified in BC are ripe for exploitation as biomarkers or targeted therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.