This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered were polyhydroxyalkanoates (PHAs) produced naturally by Pseudomonas putida and Cupriavidus necator, or by recombinant Escherichia coli strains. B. bacteriovorus with a mutated PHA depolymerase gene to prevent the unwanted breakdown of the bio-product allowed the recovery of up to 80% of that accumulated by the prey bacteria, even at high biomass concentrations. This innovative downstream process highlights how B. bacteriovorus can be used as a novel, biological lytic agent for the inexpensive, industrial scale recovery of intracellular products from different Gram-negative prey cultures.
Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR.
In this study we analyze the growth-phase dependent metabolic states of Bdellovibrio bacteriovorus by constructing a fully compartmented, mass and charge-balanced genomescale metabolic model of this predatory bacterium (iCH457). Considering the differences between life cycle phases driving the growth of this predator, growth-phase condition-specific models have been generated allowing the systematic study of its metabolic capabilities. Using these computational tools, we have been able to analyze, from a system level, the dynamic metabolism of the predatory bacteria as the life cycle progresses. We provide computational evidences supporting potential axenic growth of B. bacteriovorus's in a rich medium based on its encoded metabolic capabilities. Our systems-level analysis confirms the presence of "energy-saving" mechanisms in this predator as well as an abrupt metabolic shift between the attack and intraperiplasmic growth phases. Our results strongly suggest that predatory bacteria's metabolic networks have low robustness, likely hampering their ability to tackle drastic environmental fluctuations, thus being confined to stable and predictable habitats. Overall, we present here a valuable computational testbed based on predatory bacteria activity for rational design of novel and controlled biocatalysts in biotechnological/clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.