In spite of intensive research on plant natural products and insect-plant chemical interactions over the past three decades, only two new types of botanical insecticides have been commercialized with any success in the past 15 years, those based on neem seed extracts (azadirachtin), and those based on plant essential oils. Certain plant essential oils, obtained through steam distillation and rich in monoand sesquiterpenes and related phenols, are widely used in the flavouring and fragrance industries and in aromatherapy. Some aromatic plants have traditionally been used for stored product protection, but the potential for development of pesticides from plant essential oils for use in a wide range of pest management applications has only recently been realized. Many plant essential oils and their major terpenoid constituents are neurotoxic to insects and mites and behaviourally active at sublethal concentrations. Most plant essential oils are complex mixtures. In our laboratory we have demonstrated that individual constituents of oils rarely account for a major share of the respective oil's toxicity. Further, our results suggest synergy among constituents, including among those that appear non-toxic in isolation. Repellent effects may be particularly useful in applications against public health and domestic pests, but may be useful in specific agricultural applications as well. In all of these applications, there is a premium on human and animal safety that takes priority over absolute efficacy. In agriculture, the main market niche for essential oil-based pesticides is in organic food production, at least in developed countries, where there are fewer competing pest management products. There is also scope for mixing these oils with conventional insecticides and for enhancing their efficacy with natural synergists. Some examples of field efficacy against agricultural pests are discussed.
Based on these results, patchouli oil and other essential oils have sufficient efficacy to be considered as components of an essential oil-based insecticide that targets these lepidopteran pests.
We evaluated a year-long treatment regime testing synthetic, 10-component, honey bee, Apis mellifera L. (Hymenoptera: Apidae), brood pheromone (SuperBoost; Contech Enterprises Inc., Delta, BC, Canada) on the productivity and vigor of package bee colonies in the lower Fraser Valley of British Columbia, Canada. Fifty-eight newlyestablished 1.3-kg (3-lb) colonies treated three times with SuperBoost at 5-wk intervals starting 30 April 2009 were compared with 52 untreated control colonies. Treated colonies produced 84.3% more honey than untreated control colonies. By 8 September 2009, SuperBoost-treated colonies had 35.4% more adults than untreated colonies. By 28 September, net survival of treated and control colonies was 72.4 and 67.3%, respectively. On 5 October, treated and control colonies were divided into two additional groups, making up four cohorts: SuperBoost-treated colonies treated again during fall and spring build-up feeding with pollen substitute diet (BeePro, Mann Lake Ltd., Hackensack, MN; TIT); controls that remained untreated throughout the year (CCC); colonies treated with SuperBoost in spring-summer 2009 but not treated thereafter (TCC); and original control colonies treated with SuperBoost during the fall and spring build-up feeding periods (CTT). There was no difference among cohorts in consumption of BeePro during fall feeding, but TTT colonies (including daughter colonies split off from parent colonies) consumed 50.8% more diet than CCC colonies during spring build-up feeding. By 21 April, the normalized percentages of the original number of colonies remaining (dead colonies partially offset by splits) were as follows: CCC, 31.4%; CTT, 43.8%; TCC, 53.59%; and TTT, 80.0%. The net benefit of placing 100 newly established package bee colonies on a year-long six-treatment regime with SuperBoost would be US$6,202 (US$62.02 per colony). We conclude that treatment with SuperBoost enhanced the productivity and survival of package bee colonies and hypothesize that similar results could be achieved with established colonies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.