The sensing of carbon monoxide (CO) using electrochemical cells or semiconducting metal oxides has led to inexpensive alarms for the home and workplace. It is now recognised that chronic exposure to low levels of CO also poses a significant health risk. It is perhaps surprising therefore that the CO is used in cell-signalling pathways and plays a growing role in therapy. However, the selective monitoring of low levels of CO remains challenging, and it is this area that has benefited from the development of probes which give a colour or fluorescence response. This feature article covers the design of chromo-fluorogenic probes and their application to CO sensing in air, solution and in cells.
A two-photon fluorescent probe based on a ruthenium(II) vinyl complex is capable of selectively detecting carbon monoxide in cells and ex vivo using mice with a subcutaneous air pouch as a model for inflammation. This probe combines highly selective and sensitive ex vivo detection of endogenous CO in a realistic model with facile, inexpensive synthesis, and displays many advantages over the widely used palladium-based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.